Differentiable and Learnable Wireless Simulation with Geometric Transformers
- URL: http://arxiv.org/abs/2406.14995v2
- Date: Mon, 07 Oct 2024 15:59:03 GMT
- Title: Differentiable and Learnable Wireless Simulation with Geometric Transformers
- Authors: Thomas Hehn, Markus Peschl, Tribhuvanesh Orekondy, Arash Behboodi, Johann Brehmer,
- Abstract summary: Wi-GATr is a fully-learnable neural simulation surrogate designed to predict the channel observations based on scene primitives.
We evaluate our approach on a range of tasks and find that Wi-GATr is accurate, fast, sample-efficient, and robust to symmetry-induced transformations.
- Score: 13.538643388955768
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modelling the propagation of electromagnetic wireless signals is critical for designing modern communication systems. Wireless ray tracing simulators model signal propagation based on the 3D geometry and other scene parameters, but their accuracy is fundamentally limited by underlying modelling assumptions and correctness of parameters. In this work, we introduce Wi-GATr, a fully-learnable neural simulation surrogate designed to predict the channel observations based on scene primitives (e.g., surface mesh, antenna position and orientation). Recognizing the inherently geometric nature of these primitives, Wi-GATr leverages an equivariant Geometric Algebra Transformer that operates on a tokenizer specifically tailored for wireless simulation. We evaluate our approach on a range of tasks (i.e., signal strength and delay spread prediction, receiver localization, and geometry reconstruction) and find that Wi-GATr is accurate, fast, sample-efficient, and robust to symmetry-induced transformations. Remarkably, we find our results also translate well to the real world: Wi-GATr demonstrates more than 35% lower error than hybrid techniques, and 70% lower error than a calibrated wireless tracer.
Related papers
- Resource-Efficient Beam Prediction in mmWave Communications with Multimodal Realistic Simulation Framework [57.994965436344195]
Beamforming is a key technology in millimeter-wave (mmWave) communications that improves signal transmission by optimizing directionality and intensity.
multimodal sensing-aided beam prediction has gained significant attention, using various sensing data to predict user locations or network conditions.
Despite its promising potential, the adoption of multimodal sensing-aided beam prediction is hindered by high computational complexity, high costs, and limited datasets.
arXiv Detail & Related papers (2025-04-07T15:38:25Z) - A Lightweight Human Pose Estimation Approach for Edge Computing-Enabled Metaverse with Compressive Sensing [23.884862152830184]
The ability to estimate 3D movements of users over edge computing-enabled networks, such as 5G/6G networks, is a key enabler for the new era of extended reality (XR) and Metaverse applications.
Recent advancements in deep learning have shown advantages over optimization techniques for estimating 3D human poses given spare measurements from sensor signals.
We propose a novel approach for redundancy removal and lightweight transmission of IMU signals over noisy wireless environments.
arXiv Detail & Related papers (2024-08-26T02:57:23Z) - Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations [1.1932047172700866]
This paper presents a methodology to learn surrogate models of steady state fluid dynamics simulations on meshed domains.
The proposed models can be applied directly to unstructured domains for different flow conditions.
Remarkably, the method can perform inference five order of magnitude faster than the high fidelity solver on the RANS transonic airfoil dataset.
arXiv Detail & Related papers (2024-07-29T11:48:44Z) - EM-GANSim: Real-time and Accurate EM Simulation Using Conditional GANs for 3D Indoor Scenes [55.2480439325792]
We present a novel machine-learning (ML) approach (EM-GANSim) for real-time electromagnetic (EM) propagation.
In practice, it can compute the signal strength in a few milliseconds on any location in 3D indoor environments.
arXiv Detail & Related papers (2024-05-27T17:19:02Z) - Diffraction and Scattering Aware Radio Map and Environment
Reconstruction using Geometry Model-Assisted Deep Learning [14.986314279939952]
This paper proposes to employ the received signal strength (RSS) data to jointly construct the radio map and a virtual environment.
We develop a virtual obstacle model and characterize the geometry relation between the propagation paths and the virtual obstacles.
Numerical experiments demonstrate that, in addition to reconstructing a 3D virtual environment, the proposed model outperforms the state-of-the-art methods in radio map construction with 10%-18% accuracy improvements.
arXiv Detail & Related papers (2024-03-01T02:20:01Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Learning Radio Environments by Differentiable Ray Tracing [56.40113938833999]
We introduce a novel gradient-based calibration method, complemented by differentiable parametrizations of material properties, scattering and antenna patterns.
We have validated our method using both synthetic data and real-world indoor channel measurements, employing a distributed multiple-input multiple-output (MIMO) channel sounder.
arXiv Detail & Related papers (2023-11-30T13:50:21Z) - NeuRBF: A Neural Fields Representation with Adaptive Radial Basis
Functions [93.02515761070201]
We present a novel type of neural fields that uses general radial bases for signal representation.
Our method builds upon general radial bases with flexible kernel position and shape, which have higher spatial adaptivity and can more closely fit target signals.
When applied to neural radiance field reconstruction, our method achieves state-of-the-art rendering quality, with small model size and comparable training speed.
arXiv Detail & Related papers (2023-09-27T06:32:05Z) - Sionna RT: Differentiable Ray Tracing for Radio Propagation Modeling [65.17711407805756]
Sionna is a GPU-accelerated open-source library for link-level simulations based on.
Since release v0.14 it integrates a differentiable ray tracer (RT) for the simulation of radio wave propagation.
arXiv Detail & Related papers (2023-03-20T13:40:11Z) - Modeling Scattering Coefficients using Self-Attentive Complex
Polynomials with Image-based Representation [26.6996054977643]
We propose a sample-efficient and accurate surrogate model, named CZP, to directly estimate the scattering coefficients in the frequency domain of a given 2D planar antenna design.
We demonstrate experimentally that CZP not only outperforms baselines in terms of test loss, but also is able to find 2D antenna designs verifiable by commercial software.
arXiv Detail & Related papers (2023-01-06T23:32:07Z) - Physics Validation of Novel Convolutional 2D Architectures for Speeding
Up High Energy Physics Simulations [0.0]
We apply Geneversarative Adrial Networks (GANs), a deep learning technique, to replace the calorimeter detector simulations.
We develop new two-dimensional convolutional networks to solve the same 3D image generation problem faster.
Our results demonstrate a high physics accuracy and further consolidate the use of GANs for fast detector simulations.
arXiv Detail & Related papers (2021-05-19T07:24:23Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.