Exact discovery is polynomial for sparse causal Bayesian networks
- URL: http://arxiv.org/abs/2406.15012v1
- Date: Fri, 21 Jun 2024 09:41:30 GMT
- Title: Exact discovery is polynomial for sparse causal Bayesian networks
- Authors: Felix L. Rios, Giusi Moffa, Jack Kuipers,
- Abstract summary: We show how to use properties of Bayesian networks to prune search space and lower computational cost.
Our approach then out-competes the state-of-the-art at lower densities.
These results pave the way for faster exact causal discovery in larger and sparser networks.
- Score: 1.5293427903448027
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Causal Bayesian networks are widely used tools for summarising the dependencies between variables and elucidating their putative causal relationships. Learning networks from data is computationally hard in general. The current state-of-the-art approaches for exact causal discovery are integer linear programming over the underlying space of directed acyclic graphs, dynamic programming and shortest-path searches over the space of topological orders, and constraint programming combining both. For dynamic programming over orders, the computational complexity is known to be exponential base 2 in the number of variables in the network. We demonstrate how to use properties of Bayesian networks to prune the search space and lower the computational cost, while still guaranteeing exact discovery. When including new path-search and divide-and-conquer criteria, we prove optimality in quadratic time for matchings, and polynomial time for any network class with logarithmically-bound largest connected components. In simulation studies we observe the polynomial dependence for sparse networks and that, beyond some critical value, the logarithm of the base grows with the network density. Our approach then out-competes the state-of-the-art at lower densities. These results therefore pave the way for faster exact causal discovery in larger and sparser networks.
Related papers
- Coordinated Multi-Neighborhood Learning on a Directed Acyclic Graph [6.727984016678534]
Learning the structure of causal directed acyclic graphs (DAGs) is useful in many areas of machine learning and artificial intelligence.
It is challenging to obtain good empirical and theoretical results without strong and often restrictive assumptions.
This paper develops a new constraint-based method for estimating the local structure around multiple user-specified target nodes.
arXiv Detail & Related papers (2024-05-24T08:49:43Z) - Memorization with neural nets: going beyond the worst case [5.662924503089369]
In practice, deep neural networks are often able to easily interpolate their training data.
For real-world data, however, one intuitively expects the presence of a benign structure so that already occurs at a smaller network size than suggested by memorization capacity.
We introduce a simple randomized algorithm that, given a fixed finite dataset with two classes, with high probability constructs an interpolating three-layer neural network in time.
arXiv Detail & Related papers (2023-09-30T10:06:05Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Predictions Based on Pixel Data: Insights from PDEs and Finite Differences [0.0]
This paper deals with approximation of time sequences where each observation is a matrix.
We show that with relatively small networks, we can represent exactly a class of numerical discretizations of PDEs based on the method of lines.
Our network architecture is inspired by those typically adopted in the approximation of time sequences.
arXiv Detail & Related papers (2023-05-01T08:54:45Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - Berrut Approximated Coded Computing: Straggler Resistance Beyond
Polynomial Computing [34.69732430310801]
We propose Berrut Approximated Coded Computing (BACC) as an alternative approach to deal with stragglers effect.
BACC is proven to be numerically stable with low computational complexity.
In particular, BACC is used to train a deep neural network on a cluster of servers.
arXiv Detail & Related papers (2020-09-17T14:23:38Z) - Understanding Boolean Function Learnability on Deep Neural Networks [0.0]
Computational learning theory states that many classes of formulas are learnable in time.
This paper addresses the understudied subject of how, in practice, such formulas can be learned by deep neural networks.
arXiv Detail & Related papers (2020-09-13T03:49:20Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.