Addressing Vulnerabilities in AI-Image Detection: Challenges and Proposed Solutions
- URL: http://arxiv.org/abs/2412.00073v1
- Date: Tue, 26 Nov 2024 06:35:26 GMT
- Title: Addressing Vulnerabilities in AI-Image Detection: Challenges and Proposed Solutions
- Authors: Justin Jiang,
- Abstract summary: This study evaluates the effectiveness of convolutional neural networks (CNNs) and DenseNet architectures for detecting AI-generated images.
We analyze the impact of updates and modifications such as Gaussian blurring, prompt text changes, and Low-Rank Adaptation (LoRA) on detection accuracy.
The findings highlight vulnerabilities in current detection methods and propose strategies to enhance the robustness and reliability of AI-image detection systems.
- Score: 0.0
- License:
- Abstract: The rise of advanced AI models like Generative Adversarial Networks (GANs) and diffusion models such as Stable Diffusion has made the creation of highly realistic images accessible, posing risks of misuse in misinformation and manipulation. This study evaluates the effectiveness of convolutional neural networks (CNNs), as well as DenseNet architectures, for detecting AI-generated images. Using variations of the CIFAKE dataset, including images generated by different versions of Stable Diffusion, we analyze the impact of updates and modifications such as Gaussian blurring, prompt text changes, and Low-Rank Adaptation (LoRA) on detection accuracy. The findings highlight vulnerabilities in current detection methods and propose strategies to enhance the robustness and reliability of AI-image detection systems.
Related papers
- Detecting Discrepancies Between AI-Generated and Natural Images Using Uncertainty [91.64626435585643]
We propose a novel approach for detecting AI-generated images by leveraging predictive uncertainty to mitigate misuse and associated risks.
The motivation arises from the fundamental assumption regarding the distributional discrepancy between natural and AI-generated images.
We propose to leverage large-scale pre-trained models to calculate the uncertainty as the score for detecting AI-generated images.
arXiv Detail & Related papers (2024-12-08T11:32:25Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
We introduce SEMI-TRUTHS, featuring 27,600 real images, 223,400 masks, and 1,472,700 AI-augmented images.
Each augmented image is accompanied by metadata for standardized and targeted evaluation of detector robustness.
Our findings suggest that state-of-the-art detectors exhibit varying sensitivities to the types and degrees of perturbations, data distributions, and augmentation methods used.
arXiv Detail & Related papers (2024-11-12T01:17:27Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusion is a framework that modifies AI-generated images into high-quality, imperceptible adversarial examples.
It is effective in both white-box and black-box settings, transforming AI-generated images into high-quality adversarial forgeries.
arXiv Detail & Related papers (2024-08-11T01:22:29Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
We analyze existing state-of-the-art AIGI detection methods based on frozen CLIP embeddings.
We show how to interpret them, shedding light on how images produced by various AI generators differ from real ones.
arXiv Detail & Related papers (2024-06-21T10:33:09Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGID is a training-free and model-agnostic method for robust AI-generated image detection.
RIGID significantly outperforms existing trainingbased and training-free detectors.
arXiv Detail & Related papers (2024-05-30T14:49:54Z) - Diffusion Model Driven Test-Time Image Adaptation for Robust Skin Lesion Classification [24.08402880603475]
We propose a test-time image adaptation method to enhance the accuracy of the model on test data.
We modify the target test images by projecting them back to the source domain using a diffusion model.
Our method makes the robustness more robust across various corruptions, architectures, and data regimes.
arXiv Detail & Related papers (2024-05-18T13:28:51Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference Analysis for No-Reference Image Quality Assessment [78.21609845377644]
We propose a novel class of state-of-the-art (SOTA) generative model, which exhibits the capability to model intricate relationships.
We devise a new diffusion restoration network that leverages the produced enhanced image and noise-containing images.
Two visual evaluation branches are designed to comprehensively analyze the obtained high-level feature information.
arXiv Detail & Related papers (2024-02-22T09:39:46Z) - Exposing the Fake: Effective Diffusion-Generated Images Detection [14.646957596560076]
This paper proposes a novel detection method called Stepwise Error for Diffusion-generated Image Detection (SeDID)
SeDID exploits the unique attributes of diffusion models, namely deterministic reverse and deterministic denoising errors.
Our work makes a pivotal contribution to distinguishing diffusion model-generated images, marking a significant step in the domain of artificial intelligence security.
arXiv Detail & Related papers (2023-07-12T16:16:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.