Surface Normal Reconstruction Using Polarization-Unet
- URL: http://arxiv.org/abs/2406.15118v1
- Date: Fri, 21 Jun 2024 13:09:58 GMT
- Title: Surface Normal Reconstruction Using Polarization-Unet
- Authors: F. S. Mortazavi, S. Dajkhosh, M. Saadatseresht,
- Abstract summary: Shape from polarization (SfP) is one of the best solutions for high-resolution three-dimensional reconstruction of objects.
In this paper, an end-to-end deep learning approach has been presented to produce the surface normal of objects.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Today, three-dimensional reconstruction of objects has many applications in various fields, and therefore, choosing a suitable method for high resolution three-dimensional reconstruction is an important issue and displaying high-level details in three-dimensional models is a serious challenge in this field. Until now, active methods have been used for high-resolution three-dimensional reconstruction. But the problem of active three-dimensional reconstruction methods is that they require a light source close to the object. Shape from polarization (SfP) is one of the best solutions for high-resolution three-dimensional reconstruction of objects, which is a passive method and does not have the drawbacks of active methods. The changes in polarization of the reflected light from an object can be analyzed by using a polarization camera or locating polarizing filter in front of the digital camera and rotating the filter. Using this information, the surface normal can be reconstructed with high accuracy, which will lead to local reconstruction of the surface details. In this paper, an end-to-end deep learning approach has been presented to produce the surface normal of objects. In this method a benchmark dataset has been used to train the neural network and evaluate the results. The results have been evaluated quantitatively and qualitatively by other methods and under different lighting conditions. The MAE value (Mean-Angular-Error) has been used for results evaluation. The evaluations showed that the proposed method could accurately reconstruct the surface normal of objects with the lowest MAE value which is equal to 18.06 degree on the whole dataset, in comparison to previous physics-based methods which are between 41.44 and 49.03 degree.
Related papers
- ND-SDF: Learning Normal Deflection Fields for High-Fidelity Indoor Reconstruction [50.07671826433922]
It is non-trivial to simultaneously recover meticulous geometry and preserve smoothness across regions with differing characteristics.
We propose ND-SDF, which learns a Normal Deflection field to represent the angular deviation between the scene normal and the prior normal.
Our method not only obtains smooth weakly textured regions such as walls and floors but also preserves the geometric details of complex structures.
arXiv Detail & Related papers (2024-08-22T17:59:01Z) - High Resolution Surface Reconstruction of Cultural Heritage Objects Using Shape from Polarization Method [0.0]
The shape from polarization method has been investigated, a passive method with no drawbacks of active methods.
The resolution of the depth maps can be dramatically increased using the information obtained from the polarization light.
The fusion of polarization and photogrammetric methods is an appropriate solution for achieving high resolution three-dimensional reconstruction.
arXiv Detail & Related papers (2024-06-21T13:14:48Z) - RNb-NeuS: Reflectance and Normal-based Multi-View 3D Reconstruction [3.1820300989695833]
This paper introduces a versatile paradigm for integrating multi-view reflectance and normal maps acquired through photometric stereo.
Our approach employs a pixel-wise joint re- parameterization of reflectance and normal, considering them as a vector of radiances rendered under simulated, varying illumination.
It significantly improves the detailed 3D reconstruction of areas with high curvature or low visibility.
arXiv Detail & Related papers (2023-12-02T19:49:27Z) - Polarimetric Multi-View Inverse Rendering [13.391866136230165]
A polarization camera has great potential for 3D reconstruction since the angle of polarization (AoP) and the degree of polarization (DoP) of reflected light are related to an object's surface normal.
We propose a novel 3D reconstruction method called Polarimetric Multi-View Inverse Rendering (Polarimetric MVIR) that effectively exploits geometric, photometric, and polarimetric cues extracted from input multi-view color-polarization images.
arXiv Detail & Related papers (2022-12-24T12:12:12Z) - High-Quality RGB-D Reconstruction via Multi-View Uncalibrated
Photometric Stereo and Gradient-SDF [48.29050063823478]
We present a novel multi-view RGB-D based reconstruction method that tackles camera pose, lighting, albedo, and surface normal estimation.
The proposed method formulates the image rendering process using specific physically-based model(s) and optimize the surface's volumetric quantities on the actual surface.
arXiv Detail & Related papers (2022-10-21T19:09:08Z) - Estimating Neural Reflectance Field from Radiance Field using Tree
Structures [29.431165709718794]
We present a new method for estimating the Neural Reflectance Field (NReF) of an object from a set of posed multi-view images under unknown lighting.
NReF represents 3D geometry and appearance of objects in a disentangled manner, and are hard to be estimated from images only.
Our method solves this problem by exploiting the Neural Radiance Field (NeRF) as a proxy representation, from which we perform further decomposition.
arXiv Detail & Related papers (2022-10-09T10:21:31Z) - Self-calibrating Photometric Stereo by Neural Inverse Rendering [88.67603644930466]
This paper tackles the task of uncalibrated photometric stereo for 3D object reconstruction.
We propose a new method that jointly optimize object shape, light directions, and light intensities.
Our method demonstrates state-of-the-art accuracy in light estimation and shape recovery on real-world datasets.
arXiv Detail & Related papers (2022-07-16T02:46:15Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
We present a modern solution to the multi-view photometric stereo problem (MVPS)
We procure the surface orientation using a photometric stereo (PS) image formation model and blend it with a multi-view neural radiance field representation to recover the object's surface geometry.
Our method performs neural rendering of multi-view images while utilizing surface normals estimated by a deep photometric stereo network.
arXiv Detail & Related papers (2021-10-11T20:20:03Z) - Uncalibrated Neural Inverse Rendering for Photometric Stereo of General
Surfaces [103.08512487830669]
This paper presents an uncalibrated deep neural network framework for the photometric stereo problem.
Existing neural network-based methods either require exact light directions or ground-truth surface normals of the object or both.
We propose an uncalibrated neural inverse rendering approach to this problem.
arXiv Detail & Related papers (2020-12-12T10:33:08Z) - Depth Completion using Piecewise Planar Model [94.0808155168311]
A depth map can be represented by a set of learned bases and can be efficiently solved in a closed form solution.
However, one issue with this method is that it may create artifacts when colour boundaries are inconsistent with depth boundaries.
We enforce a more strict model in depth recovery: a piece-wise planar model.
arXiv Detail & Related papers (2020-12-06T07:11:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.