Geometric Constrained Non-Line-of-Sight Imaging
- URL: http://arxiv.org/abs/2503.17992v1
- Date: Sun, 23 Mar 2025 08:56:00 GMT
- Title: Geometric Constrained Non-Line-of-Sight Imaging
- Authors: Xueying Liu, Lianfang Wang, Jun Liu, Yong Wang, Yuping Duan,
- Abstract summary: We propose a novel joint albedo-surface reconstruction method, which utilizes the Frobenius norm of the shape operator to control the variation rate of the normal field.<n>By improving the accuracy of the normal field, it enhances detail representation and achieves high-precision reconstruction of hidden object geometry.
- Score: 8.870147903560023
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Normal reconstruction is crucial in non-line-of-sight (NLOS) imaging, as it provides key geometric and lighting information about hidden objects, which significantly improves reconstruction accuracy and scene understanding. However, jointly estimating normals and albedo expands the problem from matrix-valued functions to tensor-valued functions that substantially increasing complexity and computational difficulty. In this paper, we propose a novel joint albedo-surface reconstruction method, which utilizes the Frobenius norm of the shape operator to control the variation rate of the normal field. It is the first attempt to apply regularization methods to the reconstruction of surface normals for hidden objects. By improving the accuracy of the normal field, it enhances detail representation and achieves high-precision reconstruction of hidden object geometry. The proposed method demonstrates robustness and effectiveness on both synthetic and experimental datasets. On transient data captured within 15 seconds, our surface normal-regularized reconstruction model produces more accurate surfaces than recently proposed methods and is 30 times faster than the existing surface reconstruction approach.
Related papers
- ND-SDF: Learning Normal Deflection Fields for High-Fidelity Indoor Reconstruction [50.07671826433922]
It is non-trivial to simultaneously recover meticulous geometry and preserve smoothness across regions with differing characteristics.
We propose ND-SDF, which learns a Normal Deflection field to represent the angular deviation between the scene normal and the prior normal.
Our method not only obtains smooth weakly textured regions such as walls and floors but also preserves the geometric details of complex structures.
arXiv Detail & Related papers (2024-08-22T17:59:01Z) - InfoNorm: Mutual Information Shaping of Normals for Sparse-View Reconstruction [15.900375207144759]
3D surface reconstruction from multi-view images is essential for scene understanding and interaction.
Recent implicit surface representations, such as Neural Radiance Fields (NeRFs) and signed distance functions (SDFs) employ various geometric priors to resolve the lack of observed information.
We propose regularizing the geometric modeling by explicitly encouraging the mutual information among surface normals of highly correlated scene points.
arXiv Detail & Related papers (2024-07-17T15:46:25Z) - SMORE: Simulataneous Map and Object REconstruction [66.66729715211642]
We present a method for dynamic surface reconstruction of large-scale urban scenes from LiDAR.<n>We take a holistic perspective and optimize a compositional model of a dynamic scene that decomposes the world into rigidly-moving objects and the background.
arXiv Detail & Related papers (2024-06-19T23:53:31Z) - VCR-GauS: View Consistent Depth-Normal Regularizer for Gaussian Surface Reconstruction [47.603017811399624]
We propose a Depth-Normal regularizer that directly couples normal with other geometric parameters, leading to full updates of the geometric parameters from normal regularization.
We also introduce a densification and splitting strategy to regularize the size and distribution of 3D Gaussians for more accurate surface modeling.
arXiv Detail & Related papers (2024-06-09T13:15:43Z) - Indoor Scene Reconstruction with Fine-Grained Details Using Hybrid Representation and Normal Prior Enhancement [50.56517624931987]
The reconstruction of indoor scenes from multi-view RGB images is challenging due to the coexistence of flat and texture-less regions.
Recent methods leverage neural radiance fields aided by predicted surface normal priors to recover the scene geometry.
This work aims to reconstruct high-fidelity surfaces with fine-grained details by addressing the above limitations.
arXiv Detail & Related papers (2023-09-14T12:05:29Z) - HR-NeuS: Recovering High-Frequency Surface Geometry via Neural Implicit
Surfaces [6.382138631957651]
We present High-Resolution NeuS, a novel neural implicit surface reconstruction method.
HR-NeuS recovers high-frequency surface geometry while maintaining large-scale reconstruction accuracy.
We demonstrate through experiments on DTU and BlendedMVS datasets that our approach produces 3D geometries that are qualitatively more detailed and quantitatively of similar accuracy compared to previous approaches.
arXiv Detail & Related papers (2023-02-14T02:25:16Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
State-of-the-art neural implicit methods allow for high-quality reconstructions of simple scenes from many input views.
This is caused primarily by the inherent ambiguity in the RGB reconstruction loss that does not provide enough constraints.
Motivated by recent advances in the area of monocular geometry prediction, we explore the utility these cues provide for improving neural implicit surface reconstruction.
arXiv Detail & Related papers (2022-06-01T17:58:15Z) - NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction [88.02850205432763]
We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inputs.
Existing neural surface reconstruction approaches, such as DVR and IDR, require foreground mask as supervision.
We observe that the conventional volume rendering method causes inherent geometric errors for surface reconstruction.
We propose a new formulation that is free of bias in the first order of approximation, thus leading to more accurate surface reconstruction even without the mask supervision.
arXiv Detail & Related papers (2021-06-20T12:59:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.