論文の概要: Multimodal Deformable Image Registration for Long-COVID Analysis Based on Progressive Alignment and Multi-perspective Loss
- arxiv url: http://arxiv.org/abs/2406.15172v1
- Date: Fri, 21 Jun 2024 14:19:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 13:22:51.665746
- Title: Multimodal Deformable Image Registration for Long-COVID Analysis Based on Progressive Alignment and Multi-perspective Loss
- Title(参考訳): プログレッシブアライメントとマルチパースペクティブロスに基づく長期新型コロナウイルス解析のためのマルチモーダルデフォルマブルイメージレジストレーション
- Authors: Jiahua Li, James T. Grist, Fergus V. Gleeson, Bartłomiej W. Papież,
- Abstract要約: 長期のCOVIDは、持続的な症状、特に肺障害によって特徴づけられる。
XeMRIからの機能的データとCTからの構造的データを統合することは、包括的な分析と効果的な治療戦略に不可欠である。
本稿では,長期肺CTと陽子密度MRIデータとの整合性に優れた画像登録手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Long COVID is characterized by persistent symptoms, particularly pulmonary impairment, which necessitates advanced imaging for accurate diagnosis. Hyperpolarised Xenon-129 MRI (XeMRI) offers a promising avenue by visualising lung ventilation, perfusion, as well as gas transfer. Integrating functional data from XeMRI with structural data from Computed Tomography (CT) is crucial for comprehensive analysis and effective treatment strategies in long COVID, requiring precise data alignment from those complementary imaging modalities. To this end, CT-MRI registration is an essential intermediate step, given the significant challenges posed by the direct alignment of CT and Xe-MRI. Therefore, we proposed an end-to-end multimodal deformable image registration method that achieves superior performance for aligning long-COVID lung CT and proton density MRI (pMRI) data. Moreover, our method incorporates a novel Multi-perspective Loss (MPL) function, enhancing state-of-the-art deep learning methods for monomodal registration by making them adaptable for multimodal tasks. The registration results achieve a Dice coefficient score of 0.913, indicating a substantial improvement over the state-of-the-art multimodal image registration techniques. Since the XeMRI and pMRI images are acquired in the same sessions and can be roughly aligned, our results facilitate subsequent registration between XeMRI and CT, thereby potentially enhancing clinical decision-making for long COVID management.
- Abstract(参考訳): Long COVIDは、持続的な症状、特に肺障害が特徴であり、正確な診断のために高度な画像診断を必要とする。
超分極Xenon-129 MRI(XeMRI)は、肺換気、灌流、およびガス移動を可視化することで、有望な道を提供する。
XeMRIの機能データとCT(Computed Tomography)の構造データを統合することは、長い新型コロナウイルスの包括的解析と効果的な治療戦略に不可欠であり、補完的な画像モダリティと正確なデータアライメントを必要とする。
この目的のために、CT-MRIとXe-MRIの直接アライメントによって生じる重要な課題を考えると、CT-MRIの登録は必須の中間段階である。
そこで本研究では,長期肺CTとプロトン密度MRI(pMRI)データの整合性に優れた画像登録手法を提案する。
さらに,本手法では,新しいMPL(Multi-perspective Loss)機能を導入し,マルチモーダルタスクに適応させることで,モノモーダル登録のための最先端のディープラーニング手法を強化する。
登録結果はDice係数スコア0.913を達成し、最先端のマルチモーダル画像登録技術よりも大幅に改善されたことを示す。
XeMRIとpMRIの画像は同じセッションで取得され、概ね一致させることができるので、XeMRIとCTのその後の登録が促進され、長期にわたる新型コロナウイルス治療のための臨床的意思決定が促進される可能性がある。
関連論文リスト
- BrainMVP: Multi-modal Vision Pre-training for Brain Image Analysis using Multi-parametric MRI [11.569448567735435]
BrainMVPは、マルチパラメトリックMRIスキャンを用いた脳画像解析のためのマルチモーダルビジョン事前トレーニングフレームワークである。
クロスモーダル・コンストラクション(英語版)は、特徴ある脳画像の埋め込みと効率的なモーダル融合能力を学習するために研究されている。
ダウンストリームタスクの実験は、医学領域における最先端の事前訓練方法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-14T15:12:16Z) - A Diffusion-based Xray2MRI Model: Generating Pseudo-MRI Volumes From one Single X-ray [6.014316825270666]
単一X線画像から擬似MRIボリュームを生成することができる新しい拡散型Xray2MRIモデルを提案する。
実験の結果,提案手法は実際のMRIスキャンを近似した擬似MRIシーケンスを生成することができることがわかった。
論文 参考訳(メタデータ) (2024-10-09T15:44:34Z) - Weakly supervised alignment and registration of MR-CT for cervical cancer radiotherapy [9.060365057476133]
子宮頸癌は女性の死因の1つである。
予備的な空間アライメントアルゴリズムと弱教師付きマルチモーダル登録ネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-21T15:05:51Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Enhanced Synthetic MRI Generation from CT Scans Using CycleGAN with
Feature Extraction [3.2088888904556123]
合成MRI画像を用いたCTスキャンによるモノモーダル登録の高速化手法を提案する。
提案手法は有望な結果を示し,いくつかの最先端手法より優れていた。
論文 参考訳(メタデータ) (2023-10-31T16:39:56Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z) - Patch-based field-of-view matching in multi-modal images for
electroporation-based ablations [0.6285581681015912]
マルチモーダルイメージングセンサーは、現在、介入治療作業フローの異なるステップに関与している。
この情報を統合するには、取得した画像間の観測された解剖の正確な空間的アライメントに依存する。
本稿では, ボクセルパッチを用いた地域登録手法が, ボクセルワイドアプローチと「グローバルシフト」アプローチとの間に優れた構造的妥協をもたらすことを示す。
論文 参考訳(メタデータ) (2020-11-09T11:27:45Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
提案するフレームワークは,ストレッチアウトアップサンプリングモジュール,ブレインアトラスエンコーダ,セグメンテーション一貫性モジュール,マルチスケールラベルワイド識別器から構成される。
実際の臨床データを用いた実験により,提案モデルが最先端の合成法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-06-26T02:50:09Z) - Cardiac Segmentation on Late Gadolinium Enhancement MRI: A Benchmark
Study from Multi-Sequence Cardiac MR Segmentation Challenge [43.01944884184009]
本稿では,MII 2019とともに,Multi-Sequence MR (MS-CMR) チャレンジの選択的結果を示す。
新しいアルゴリズムを開発し、LGE CMRセグメンテーションのための既存のアルゴリズムをベンチマークし、客観的に比較することを目的としていた。
これらの手法の成功は主に、MS-CMR画像からの補助的配列を含むことによる。
論文 参考訳(メタデータ) (2020-06-22T17:04:38Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。