論文の概要: Leveraging Multimodal CycleGAN for the Generation of Anatomically Accurate Synthetic CT Scans from MRIs
- arxiv url: http://arxiv.org/abs/2407.10888v1
- Date: Mon, 15 Jul 2024 16:38:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 14:10:37.717574
- Title: Leveraging Multimodal CycleGAN for the Generation of Anatomically Accurate Synthetic CT Scans from MRIs
- Title(参考訳): MRIによる解剖学的精度CTスキャン生成のためのマルチモーダルサイクルGANの応用
- Authors: Leonardo Crespi, Samuele Camnasio, Damiano Dei, Nicola Lambri, Pietro Mancosu, Marta Scorsetti, Daniele Loiacono,
- Abstract要約: 我々は、MRIから合成CTスキャンを生成するために、Deep Learningモデルの異なる構成の能力を解析する。
異なるMRIモダリティからCTスキャンを生成するために、コントラスト剤を使用しないいくつかのCycleGANモデルを教師なしで訓練した。
結果から, 入力のモーダル性に応じて, モデルが全く異なる性能を持つことを示す。
- 参考スコア(独自算出の注目度): 1.779948689352186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In many clinical settings, the use of both Computed Tomography (CT) and Magnetic Resonance (MRI) is necessary to pursue a thorough understanding of the patient's anatomy and to plan a suitable therapeutical strategy; this is often the case in MRI-based radiotherapy, where CT is always necessary to prepare the dose delivery, as it provides the essential information about the radiation absorption properties of the tissues. Sometimes, MRI is preferred to contour the target volumes. However, this approach is often not the most efficient, as it is more expensive, time-consuming and, most importantly, stressful for the patients. To overcome this issue, in this work, we analyse the capabilities of different configurations of Deep Learning models to generate synthetic CT scans from MRI, leveraging the power of Generative Adversarial Networks (GANs) and, in particular, the CycleGAN architecture, capable of working in an unsupervised manner and without paired images, which were not available. Several CycleGAN models were trained unsupervised to generate CT scans from different MRI modalities with and without contrast agents. To overcome the problem of not having a ground truth, distribution-based metrics were used to assess the model's performance quantitatively, together with a qualitative evaluation where physicians were asked to differentiate between real and synthetic images to understand how realistic the generated images were. The results show how, depending on the input modalities, the models can have very different performances; however, models with the best quantitative results, according to the distribution-based metrics used, can generate very difficult images to distinguish from the real ones, even for physicians, demonstrating the approach's potential.
- Abstract(参考訳): CT(CT)とMRI(MRI)の両方の使用は、患者の解剖を徹底的に把握し、適切な治療戦略を立案するために必要である。
時々、MRIはターゲットのボリュームをゆがめるのが好まれる。
しかし、このアプローチはコストが高く、時間がかかり、そして最も重要なのは、患者にとってストレスが多いため、最も効率的ではないことが多い。
この問題を克服するために、我々は、MRIから合成CTスキャンを生成するためのDeep Learningモデルの異なる構成の能力を分析し、ジェネレーティブ・アドバイザリアル・ネットワーク(GAN)のパワーを活用し、特に、教師なしの方法で動作でき、ペア画像も利用できないCycleGANアーキテクチャを利用する。
異なるMRIモダリティからCTスキャンを生成するために、コントラスト剤を使用しないいくつかのCycleGANモデルを教師なしで訓練した。
実際の画像と合成画像を区別して生成した画像がいかにリアルかを理解するための定性的な評価とともに、基礎的な真実を持たない問題を解決するために、分布に基づくメトリクスを用いてモデルの性能を定量的に評価した。
結果から, 入力のモダリティによって, モデルが全く異なる性能を持つことを示すが, 最適な定量的結果を持つモデルでは, 医用であっても, 実際のモデルと区別しにくい画像を生成することができる。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Enhanced Synthetic MRI Generation from CT Scans Using CycleGAN with
Feature Extraction [3.2088888904556123]
合成MRI画像を用いたCTスキャンによるモノモーダル登録の高速化手法を提案する。
提案手法は有望な結果を示し,いくつかの最先端手法より優れていた。
論文 参考訳(メタデータ) (2023-10-31T16:39:56Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Conversion Between CT and MRI Images Using Diffusion and Score-Matching
Models [7.745729132928934]
本稿では,拡散モデルとスコアマッチングモデルという,新たなディープラーニングフレームワークを提案する。
以上の結果から, 拡散およびスコアマッチングモデルにより, CNNおよびGANモデルよりも優れた合成CT画像が生成されることがわかった。
本研究は,相補的な画像モダリティを用いて得られた画像に基づいて高品質な画像を生成するために,拡散とスコアマッチングモデルが優れていることを示唆する。
論文 参考訳(メタデータ) (2022-09-24T23:50:54Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - MIST GAN: Modality Imputation Using Style Transfer for MRI [0.49172272348627766]
我々は既存のMRモードから欠落したMRモダリティを,スタイル転送を用いた計算問題として定式化する。
複数対1のマッピングにより、ターゲット画像を生成する際に、ドメイン固有のスタイルに対応するネットワークをモデル化する。
われわれのモデルはBraTS'18データセットでテストされ、その結果はビジュアルメトリクスの点で最先端のものと同等である。
論文 参考訳(メタデータ) (2022-02-21T17:50:40Z) - Deep Learning based Multi-modal Computing with Feature Disentanglement
for MRI Image Synthesis [8.363448006582065]
本稿では,MRI合成のための深層学習に基づくマルチモーダル計算モデルを提案する。
提案手法は,各入力モダリティを,共有情報と特定の情報を持つモダリティ固有空間で分割する。
テストフェーズにおける目標モダリティの特定情報の欠如に対処するために、局所適応融合(laf)モジュールを採用してモダリティライクな擬似ターゲットを生成する。
論文 参考訳(メタデータ) (2021-05-06T17:22:22Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
提案するフレームワークは,ストレッチアウトアップサンプリングモジュール,ブレインアトラスエンコーダ,セグメンテーション一貫性モジュール,マルチスケールラベルワイド識別器から構成される。
実際の臨床データを用いた実験により,提案モデルが最先端の合成法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-06-26T02:50:09Z) - Structurally aware bidirectional unpaired image to image translation
between CT and MR [0.14788776577018314]
深層学習技術は、複数の画像モダリティ間の画像変換に画像の可能性を活用するのに役立つ。
これらの技術は、MRI情報のフィードバックにより、CT下で外科的計画を実行するのに役立つ。
論文 参考訳(メタデータ) (2020-06-05T11:21:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。