論文の概要: DiffExplainer: Unveiling Black Box Models Via Counterfactual Generation
- arxiv url: http://arxiv.org/abs/2406.15182v1
- Date: Fri, 21 Jun 2024 14:27:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 13:22:51.652119
- Title: DiffExplainer: Unveiling Black Box Models Via Counterfactual Generation
- Title(参考訳): DiffExplainer:ブラックボックスのモデルを発表
- Authors: Yingying Fang, Shuang Wu, Zihao Jin, Caiwen Xu, Shiyi Wang, Simon Walsh, Guang Yang,
- Abstract要約: ブラックボックスモデルに接続した場合に異なる決定を誘導する反ファクト画像を生成することができるエージェントモデルを提案する。
このエージェントモデルを用いることで、ブラックモデルの最終予測に影響を与える影響のあるイメージパターンを明らかにすることができる。
医療予後タスクの厳格な領域におけるアプローチの検証を行った。
- 参考スコア(独自算出の注目度): 11.201840101870808
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the field of medical imaging, particularly in tasks related to early disease detection and prognosis, understanding the reasoning behind AI model predictions is imperative for assessing their reliability. Conventional explanation methods encounter challenges in identifying decisive features in medical image classifications, especially when discriminative features are subtle or not immediately evident. To address this limitation, we propose an agent model capable of generating counterfactual images that prompt different decisions when plugged into a black box model. By employing this agent model, we can uncover influential image patterns that impact the black model's final predictions. Through our methodology, we efficiently identify features that influence decisions of the deep black box. We validated our approach in the rigorous domain of medical prognosis tasks, showcasing its efficacy and potential to enhance the reliability of deep learning models in medical image classification compared to existing interpretation methods. The code will be publicly available at https://github.com/ayanglab/DiffExplainer.
- Abstract(参考訳): 医療画像の分野では、特に早期疾患の検出や予後に関連するタスクにおいて、AIモデル予測の背後にある理由を理解することは、その信頼性を評価するのに不可欠である。
医用画像分類における決定的特徴を識別する従来の説明法は、特に識別的特徴が微妙であるか、即時に明らかでない場合に問題となる。
この制限に対処するために,ブラックボックスモデルに接続した場合に異なる決定を誘導する反ファクト画像を生成するエージェントモデルを提案する。
このエージェントモデルを用いることで、ブラックモデルの最終予測に影響を与える影響のあるイメージパターンを明らかにすることができる。
提案手法により,深いブラックボックスの決定に影響を及ぼす特徴を効率的に同定する。
我々は,医学的予後タスクの厳密な領域におけるアプローチを検証し,既存の解釈法と比較して,医用画像分類における深層学習モデルの信頼性を高める効果と可能性を示した。
コードはhttps://github.com/ayanglab/DiffExplainer.comで公開される。
関連論文リスト
- Decoding Decision Reasoning: A Counterfactual-Powered Model for Knowledge Discovery [6.1521675665532545]
医用画像では、AIモデルの予測の背後にある根拠を明らかにすることが、信頼性を評価する上で重要である。
本稿では,意思決定推論と特徴識別機能を備えた説明可能なモデルを提案する。
提案手法を実装することにより,データ駆動モデルにより活用されるクラス固有の特徴を効果的に識別および可視化することができる。
論文 参考訳(メタデータ) (2024-05-23T19:00:38Z) - FeaInfNet: Diagnosis in Medical Image with Feature-Driven Inference and
Visual Explanations [4.022446255159328]
解釈可能なディープラーニングモデルは、画像認識の分野で広く注目を集めている。
提案されている多くの解釈可能性モデルは、医用画像診断の精度と解釈性に問題がある。
これらの問題を解決するために,機能駆動型推論ネットワーク(FeaInfNet)を提案する。
論文 参考訳(メタデータ) (2023-12-04T13:09:00Z) - On the Out of Distribution Robustness of Foundation Models in Medical
Image Segmentation [47.95611203419802]
視覚と言語の基礎は、様々な自然画像とテキストデータに基づいて事前訓練されており、有望なアプローチとして現れている。
一般化性能を,同じ分布データセット上で微調整した後,事前学習した各種モデルの未確認領域と比較した。
さらに,凍結モデルに対する新しいベイズ不確実性推定法を開発し,分布外データに基づくモデルの性能評価指標として利用した。
論文 参考訳(メタデータ) (2023-11-18T14:52:10Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - Towards Trustable Skin Cancer Diagnosis via Rewriting Model's Decision [12.306688233127312]
本稿では,モデルトレーニングプロセスにHuman-in-the-loopフレームワークを導入する。
提案手法は, 共起因子を自動的に検出する。
容易に得られる概念の模範を用いて、相反する概念を学習することができる。
論文 参考訳(メタデータ) (2023-03-02T01:02:18Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
本稿では,入力の変化に関する臨床結果モデルの振る舞いを評価する拡張可能なテストフレームワークを提案する。
私たちは、同じデータを微調整しても、モデル行動は劇的に変化し、最高のパフォーマンスのモデルが常に最も医学的に可能なパターンを学習していないことを示しています。
論文 参考訳(メタデータ) (2021-11-30T15:52:04Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z) - A Question-Centric Model for Visual Question Answering in Medical
Imaging [3.619444603816032]
そこで本稿では,画像の問合せを質問文で行う視覚質問解答手法を提案する。
種々の医用・自然画像データセットを用いた実験により, 提案手法は, 画像特徴と疑問特徴を新しい方法で融合させることで, 従来の手法と同等あるいは高い精度を達成できることが示されている。
論文 参考訳(メタデータ) (2020-03-02T10:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。