Rapid and Accurate Diagnosis of Acute Aortic Syndrome using Non-contrast CT: A Large-scale, Retrospective, Multi-center and AI-based Study
- URL: http://arxiv.org/abs/2406.15222v2
- Date: Tue, 25 Jun 2024 03:17:22 GMT
- Title: Rapid and Accurate Diagnosis of Acute Aortic Syndrome using Non-contrast CT: A Large-scale, Retrospective, Multi-center and AI-based Study
- Authors: Yujian Hu, Yilang Xiang, Yan-Jie Zhou, Yangyan He, Shifeng Yang, Xiaolong Du, Chunlan Den, Youyao Xu, Gaofeng Wang, Zhengyao Ding, Jingyong Huang, Wenjun Zhao, Xuejun Wu, Donglin Li, Qianqian Zhu, Zhenjiang Li, Chenyang Qiu, Ziheng Wu, Yunjun He, Chen Tian, Yihui Qiu, Zuodong Lin, Xiaolong Zhang, Yuan He, Zhenpeng Yuan, Xiaoxiang Zhou, Rong Fan, Ruihan Chen, Wenchao Guo, Jianpeng Zhang, Tony C. W. Mok, Zi Li, Le Lu, Dehai Lang, Xiaoqiang Li, Guofu Wang, Wei Lu, Zhengxing Huang, Minfeng Xu, Hongkun Zhang,
- Abstract summary: Chest pain symptoms are highly prevalent in emergency departments (EDs), where acute aortic syndrome (AAS) is a catastrophic cardiovascular emergency with a high fatality rate.
Current triage practices in the ED can cause up to half of patients with AAS to have an initially missed diagnosis or be misdiagnosed as having other acute chest pain conditions.
We developed an artificial intelligence model (DeepAAS) using non-contrast CT, which is highly accurate for identifying AAS and provides interpretable results.
- Score: 22.886299062772693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chest pain symptoms are highly prevalent in emergency departments (EDs), where acute aortic syndrome (AAS) is a catastrophic cardiovascular emergency with a high fatality rate, especially when timely and accurate treatment is not administered. However, current triage practices in the ED can cause up to approximately half of patients with AAS to have an initially missed diagnosis or be misdiagnosed as having other acute chest pain conditions. Subsequently, these AAS patients will undergo clinically inaccurate or suboptimal differential diagnosis. Fortunately, even under these suboptimal protocols, nearly all these patients underwent non-contrast CT covering the aorta anatomy at the early stage of differential diagnosis. In this study, we developed an artificial intelligence model (DeepAAS) using non-contrast CT, which is highly accurate for identifying AAS and provides interpretable results to assist in clinical decision-making. Performance was assessed in two major phases: a multi-center retrospective study (n = 20,750) and an exploration in real-world emergency scenarios (n = 137,525). In the multi-center cohort, DeepAAS achieved a mean area under the receiver operating characteristic curve of 0.958 (95% CI 0.950-0.967). In the real-world cohort, DeepAAS detected 109 AAS patients with misguided initial suspicion, achieving 92.6% (95% CI 76.2%-97.5%) in mean sensitivity and 99.2% (95% CI 99.1%-99.3%) in mean specificity. Our AI model performed well on non-contrast CT at all applicable early stages of differential diagnosis workflows, effectively reduced the overall missed diagnosis and misdiagnosis rate from 48.8% to 4.8% and shortened the diagnosis time for patients with misguided initial suspicion from an average of 681.8 (74-11,820) mins to 68.5 (23-195) mins. DeepAAS could effectively fill the gap in the current clinical workflow without requiring additional tests.
Related papers
- Artificial Intelligence-Based Triaging of Cutaneous Melanocytic Lesions [0.8864540224289991]
Pathologists are facing an increasing workload due to a growing volume of cases and the need for more comprehensive diagnoses.
We developed an artificial intelligence (AI) model for triaging cutaneous melanocytic lesions based on whole slide images.
arXiv Detail & Related papers (2024-10-14T13:49:04Z) - Artificial intelligence for abnormality detection in high volume neuroimaging: a systematic review and meta-analysis [0.5934394862891423]
Most studies evaluating artificial intelligence (AI) models that detect abnormalities in neuroimaging are tested on unrepresentative patient cohorts.
The aim was to determine the diagnostic test accuracy and summarise the evidence supporting the use of AI models performing first-line, high-volume neuroimaging tasks.
arXiv Detail & Related papers (2024-05-09T10:12:17Z) - Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray [86.38767955626179]
Deep-learning algorithm to predict coronary artery calcium (CAC) score was developed on 460 chest x-ray.
The diagnostic accuracy of the AICAC model assessed by the area under the curve (AUC) was the primary outcome.
arXiv Detail & Related papers (2024-03-27T16:56:14Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Deep Learning Applied to Chest X-Rays: Exploiting and Preventing
Shortcuts [11.511323714777298]
This paper studies the case of spurious class skew in which patients with a particular attribute are spuriously more likely to have the outcome of interest.
We show that deep nets can accurately identify many patient attributes including sex (AUROC = 0.96) and age (AUROC >= 0.90) when learning to predict a diagnosis.
A simple transfer learning approach is surprisingly effective at preventing the shortcut and promoting good performance.
arXiv Detail & Related papers (2020-09-21T18:52:43Z) - Artificial Intelligence to Assist in Exclusion of Coronary
Atherosclerosis during CCTA Evaluation of Chest-Pain in the Emergency
Department: Preparing an Application for Real-World Use [6.9835031964130545]
We describe the development of an AI algorithm and workflow for assisting interpreting physicians in CCTA screening for the absence of coronary atherosclerosis.
The algorithm demonstrated strong performance with AUC-ROC = 0.96.
There is potential for this AI application to assist in CCTA interpretation to help extricate atherosclerosis from chest-pain presentations.
arXiv Detail & Related papers (2020-08-10T16:07:04Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - Joint Prediction and Time Estimation of COVID-19 Developing Severe
Symptoms using Chest CT Scan [49.209225484926634]
We propose a joint classification and regression method to determine whether the patient would develop severe symptoms in the later time.
To do this, the proposed method takes into account 1) the weight for each sample to reduce the outliers' influence and explore the problem of imbalance classification.
Our proposed method yields 76.97% of accuracy for predicting the severe cases, 0.524 of the correlation coefficient, and 0.55 days difference for the converted time.
arXiv Detail & Related papers (2020-05-07T12:16:37Z) - JCS: An Explainable COVID-19 Diagnosis System by Joint Classification
and Segmentation [95.57532063232198]
coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries.
To control the infection, identifying and separating the infected people is the most crucial step.
This paper develops a novel Joint Classification and (JCS) system to perform real-time and explainable COVID-19 chest CT diagnosis.
arXiv Detail & Related papers (2020-04-15T12:30:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.