FT-AED: Benchmark Dataset for Early Freeway Traffic Anomalous Event Detection
- URL: http://arxiv.org/abs/2406.15283v2
- Date: Mon, 24 Jun 2024 15:24:15 GMT
- Title: FT-AED: Benchmark Dataset for Early Freeway Traffic Anomalous Event Detection
- Authors: Austin Coursey, Junyi Ji, Marcos Quinones-Grueiro, William Barbour, Yuhang Zhang, Tyler Derr, Gautam Biswas, Daniel B. Work,
- Abstract summary: We introduce the first large-scale lane-level freeway traffic dataset for anomaly detection.
Our dataset consists of a month of weekday radar detection sensor data collected in 4 lanes along an 18-mile stretch of Interstate 24 heading toward Nashville, TN.
We show that our methods can reduce reporting delays by over 10 minutes on average while detecting 75% of crashes.
- Score: 11.978966689499702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early and accurate detection of anomalous events on the freeway, such as accidents, can improve emergency response and clearance. However, existing delays and errors in event identification and reporting make it a difficult problem to solve. Current large-scale freeway traffic datasets are not designed for anomaly detection and ignore these challenges. In this paper, we introduce the first large-scale lane-level freeway traffic dataset for anomaly detection. Our dataset consists of a month of weekday radar detection sensor data collected in 4 lanes along an 18-mile stretch of Interstate 24 heading toward Nashville, TN, comprising over 3.7 million sensor measurements. We also collect official crash reports from the Nashville Traffic Management Center and manually label all other potential anomalies in the dataset. To show the potential for our dataset to be used in future machine learning and traffic research, we benchmark numerous deep learning anomaly detection models on our dataset. We find that unsupervised graph neural network autoencoders are a promising solution for this problem and that ignoring spatial relationships leads to decreased performance. We demonstrate that our methods can reduce reporting delays by over 10 minutes on average while detecting 75% of crashes. Our dataset and all preprocessing code needed to get started are publicly released at https://vu.edu/ft-aed/ to facilitate future research.
Related papers
- Learning Traffic Anomalies from Generative Models on Real-Time Observations [49.1574468325115]
We use the Spatiotemporal Generative Adversarial Network (STGAN) framework to capture complex spatial and temporal dependencies in traffic data.
We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020.
Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates.
arXiv Detail & Related papers (2025-02-03T14:23:23Z) - Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
Drone-captured data can create an accurate multi-sensor mobility observatory for large-scale urban networks.
A simple yet effective graph-based model HiMSNet is proposed to integrate multiple data modalities and learn-temporal correlations.
arXiv Detail & Related papers (2025-01-07T03:23:28Z) - CODA: A Real-World Road Corner Case Dataset for Object Detection in
Autonomous Driving [117.87070488537334]
We introduce a challenging dataset named CODA that exposes this critical problem of vision-based detectors.
The performance of standard object detectors trained on large-scale autonomous driving datasets significantly drops to no more than 12.8% in mAR.
We experiment with the state-of-the-art open-world object detector and find that it also fails to reliably identify the novel objects in CODA.
arXiv Detail & Related papers (2022-03-15T08:32:56Z) - A data-centric weak supervised learning for highway traffic incident
detection [1.0323063834827415]
We focus on a data-centric approach to improve the accuracy and reduce the false alarm rate of traffic incident detection on highways.
We develop a weak supervised learning workflow to generate high-quality training labels for the incident data without the ground truth labels.
Overall, we show that our proposed weak supervised learning workflow achieves a high incident detection rate (0.90) and low false alarm rate (0.08)
arXiv Detail & Related papers (2021-12-17T22:14:47Z) - Graph Convolutional Networks for traffic anomaly [4.172516437934823]
Event detection has been an important task in transportation, whose task is to detect points in time when large events disrupts a large portion of the urban traffic network.
To fully capture the spatial and temporal traffic patterns remains a challenge, yet serves a crucial role for effective anomaly detection.
We formulate the problem in a novel way, as detecting anomalies in a set of directed weighted graphs representing the traffic conditions at each time interval.
arXiv Detail & Related papers (2020-12-25T22:36:22Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Automatic Detection of Major Freeway Congestion Events Using Wireless
Traffic Sensor Data: A Machine Learning Approach [0.0]
This paper introduces a machine learning based approach for reliable detection and characterization of highway traffic congestion events.
The speed data is initially time-windowed by a ten-hour long sliding window and fed into three Neural Networks.
The sliding window captures each slowdown event multiple times and results in increased confidence in congestion detection.
arXiv Detail & Related papers (2020-07-09T21:38:45Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - When, Where, and What? A New Dataset for Anomaly Detection in Driving
Videos [9.638503179434581]
This paper proposes traffic anomaly detection with a textitwhen-where-what pipeline to detect, localize, and recognize anomalous events from egocentric videos.
We introduce a new dataset called Detection of Traffic Anomaly (DoTA) containing 4,677 videos with temporal, spatial, and categorical annotations.
arXiv Detail & Related papers (2020-04-06T23:58:59Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.