Graph Convolutional Networks for traffic anomaly
- URL: http://arxiv.org/abs/2012.13637v1
- Date: Fri, 25 Dec 2020 22:36:22 GMT
- Title: Graph Convolutional Networks for traffic anomaly
- Authors: Yue Hu, Ao Qu, Dan Work
- Abstract summary: Event detection has been an important task in transportation, whose task is to detect points in time when large events disrupts a large portion of the urban traffic network.
To fully capture the spatial and temporal traffic patterns remains a challenge, yet serves a crucial role for effective anomaly detection.
We formulate the problem in a novel way, as detecting anomalies in a set of directed weighted graphs representing the traffic conditions at each time interval.
- Score: 4.172516437934823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event detection has been an important task in transportation, whose task is
to detect points in time when large events disrupts a large portion of the
urban traffic network. Travel information {Origin-Destination} (OD) matrix data
by map service vendors has large potential to give us insights to discover
historic patterns and distinguish anomalies. However, to fully capture the
spatial and temporal traffic patterns remains a challenge, yet serves a crucial
role for effective anomaly detection. Meanwhile, existing anomaly detection
methods have not well-addressed the extreme data sparsity and high-dimension
challenges, which are common in OD matrix datasets. To tackle these challenges,
we formulate the problem in a novel way, as detecting anomalies in a set of
directed weighted graphs representing the traffic conditions at each time
interval. We further propose \textit{Context augmented Graph Autoencoder}
(\textbf{Con-GAE }), that leverages graph embedding and context embedding
techniques to capture the spatial traffic network patterns while working around
the data sparsity and high-dimensionality issue. Con-GAE adopts an autoencoder
framework and detect anomalies via semi-supervised learning. Extensive
experiments show that our method can achieve up can achieve a 0.1-0.4
improvements of the area under the curve (AUC) score over state-of-art anomaly
detection baselines, when applied on several real-world large scale OD matrix
datasets.
Related papers
- ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - DeepHYDRA: Resource-Efficient Time-Series Anomaly Detection in Dynamically-Configured Systems [3.44012349879073]
We present DeepHYDRA (Deep Hybrid DBSCAN/Reduction-Based Anomaly Detection)
It combines DBSCAN and learning-based anomaly detection.
It is shown to reliably detect different types of anomalies in both large and complex datasets.
arXiv Detail & Related papers (2024-05-13T13:47:15Z) - uTRAND: Unsupervised Anomaly Detection in Traffic Trajectories [5.6328191854587395]
We present a framework called uTRAND, that shifts the problem of anomalous trajectory prediction from the pixel space to a semantic-topological domain.
We show that uTRAND outperforms other state-of-the-art approaches on a dataset of anomalous trajectories collected in a real-world setting.
arXiv Detail & Related papers (2024-04-19T08:46:33Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
We introduce a novel framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD)
In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels.
In the next stage, the decoders are retrained for detection on the original graph.
arXiv Detail & Related papers (2023-12-22T09:02:01Z) - Detecting Contextual Network Anomalies with Graph Neural Networks [4.671648049111933]
We formulate the problem as contextual anomaly detection on network traffic measurements.
We propose a custom GNN-based solution that detects traffic anomalies on origin-destination flows.
The results show that the anomalies detected by our solution are quite complementary to those captured by the baselines.
arXiv Detail & Related papers (2023-12-11T12:45:43Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - Generative Anomaly Detection for Time Series Datasets [1.7954335118363964]
Traffic congestion anomaly detection is of paramount importance in intelligent traffic systems.
We propose a data-driven generative approach that can perform tractable density estimation for detecting traffic anomalies.
Our approach significantly outperforms several state-of-the-art congestion anomaly detection and diagnosis methods in terms of Recall and F1-Score.
arXiv Detail & Related papers (2022-06-28T17:08:47Z) - From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale Contrastive Learning Approach [26.973056364587766]
Anomaly detection from graph data is an important data mining task in many applications such as social networks, finance, and e-commerce.
We propose a novel framework, graph ANomaly dEtection framework with Multi-scale cONtrastive lEarning (ANEMONE in short)
By using a graph neural network as a backbone to encode the information from multiple graph scales (views), we learn better representation for nodes in a graph.
arXiv Detail & Related papers (2022-02-11T09:45:11Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.