NLP-KG: A System for Exploratory Search of Scientific Literature in Natural Language Processing
- URL: http://arxiv.org/abs/2406.15294v2
- Date: Thu, 4 Jul 2024 18:51:43 GMT
- Title: NLP-KG: A System for Exploratory Search of Scientific Literature in Natural Language Processing
- Authors: Tim Schopf, Florian Matthes,
- Abstract summary: NLP-KG is a feature-rich system designed to support the exploration of research literature in unfamiliar natural language processing fields.
In addition to a semantic search, NLP-KG allows users to easily find survey papers that provide a quick introduction to a field of interest.
A Fields of Study hierarchy graph enables users to familiarize themselves with a field and its related areas.
- Score: 3.3916160303055567
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scientific literature searches are often exploratory, whereby users are not yet familiar with a particular field or concept but are interested in learning more about it. However, existing systems for scientific literature search are typically tailored to keyword-based lookup searches, limiting the possibilities for exploration. We propose NLP-KG, a feature-rich system designed to support the exploration of research literature in unfamiliar natural language processing (NLP) fields. In addition to a semantic search, NLP-KG allows users to easily find survey papers that provide a quick introduction to a field of interest. Further, a Fields of Study hierarchy graph enables users to familiarize themselves with a field and its related areas. Finally, a chat interface allows users to ask questions about unfamiliar concepts or specific articles in NLP and obtain answers grounded in knowledge retrieved from scientific publications. Our system provides users with comprehensive exploration possibilities, supporting them in investigating the relationships between different fields, understanding unfamiliar concepts in NLP, and finding relevant research literature. Demo, video, and code are available at: https://github.com/NLP-Knowledge-Graph/NLP-KG-WebApp.
Related papers
- The Nature of NLP: Analyzing Contributions in NLP Papers [77.31665252336157]
We quantitatively investigate what constitutes NLP research by examining research papers.
Our findings reveal a rising involvement of machine learning in NLP since the early nineties.
In post-2020, there has been a resurgence of focus on language and people.
arXiv Detail & Related papers (2024-09-29T01:29:28Z) - Knowledge Navigator: LLM-guided Browsing Framework for Exploratory Search in Scientific Literature [48.572336666741194]
We present Knowledge Navigator, a system designed to enhance exploratory search abilities.
It organizes retrieved documents into a navigable, two-level hierarchy of named and descriptive scientific topics and subtopics.
arXiv Detail & Related papers (2024-08-28T14:48:37Z) - pathfinder: A Semantic Framework for Literature Review and Knowledge Discovery in Astronomy [2.6952253149772996]
Pathfinder is a machine learning framework designed to enable literature review and knowledge discovery in astronomy.
Our framework couples advanced retrieval techniques with LLM-based synthesis to search astronomical literature by semantic context.
It addresses complexities of jargon, named entities, and temporal aspects through time-based and citation-based weighting schemes.
arXiv Detail & Related papers (2024-08-02T20:05:24Z) - DiscoverPath: A Knowledge Refinement and Retrieval System for
Interdisciplinarity on Biomedical Research [96.10765714077208]
Traditional keyword-based search engines fall short in assisting users who may not be familiar with specific terminologies.
We present a knowledge graph-based paper search engine for biomedical research to enhance the user experience.
The system, dubbed DiscoverPath, employs Named Entity Recognition (NER) and part-of-speech (POS) tagging to extract terminologies and relationships from article abstracts to create a KG.
arXiv Detail & Related papers (2023-09-04T20:52:33Z) - GAIA Search: Hugging Face and Pyserini Interoperability for NLP Training
Data Exploration [97.68234051078997]
We discuss how Pyserini can be integrated with the Hugging Face ecosystem of open-source AI libraries and artifacts.
We include a Jupyter Notebook-based walk through the core interoperability features, available on GitHub.
We present GAIA Search - a search engine built following previously laid out principles, giving access to four popular large-scale text collections.
arXiv Detail & Related papers (2023-06-02T12:09:59Z) - Meta Learning for Natural Language Processing: A Survey [88.58260839196019]
Deep learning has been the mainstream technique in natural language processing (NLP) area.
Deep learning requires many labeled data and is less generalizable across domains.
Meta-learning is an arising field in machine learning studying approaches to learn better algorithms.
arXiv Detail & Related papers (2022-05-03T13:58:38Z) - Natural Language Processing with Commonsense Knowledge: A Survey [9.634283896785611]
This paper explores the integration of commonsense knowledge into various NLP tasks.
We highlight key methodologies for incorporating commonsense knowledge and their applications across different NLP tasks.
The paper also examines the challenges and emerging trends in enhancing NLP systems with commonsense reasoning.
arXiv Detail & Related papers (2021-08-10T13:25:29Z) - Semantic and Relational Spaces in Science of Science: Deep Learning
Models for Article Vectorisation [4.178929174617172]
We focus on document-level embeddings based on the semantic and relational aspects of articles, using Natural Language Processing (NLP) and Graph Neural Networks (GNNs)
Our results show that using NLP we can encode a semantic space of articles, while with GNN we are able to build a relational space where the social practices of a research community are also encoded.
arXiv Detail & Related papers (2020-11-05T14:57:41Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
We introduce a new platform, AI Research Navigator, that combines classical keyword search with neural retrieval to discover and organize relevant literature.
We give an overview of the overall architecture of the system and of the components for document analysis, question answering, search, analytics, expert search, and recommendations.
arXiv Detail & Related papers (2020-10-30T19:12:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.