Knowledge Navigator: LLM-guided Browsing Framework for Exploratory Search in Scientific Literature
- URL: http://arxiv.org/abs/2408.15836v1
- Date: Wed, 28 Aug 2024 14:48:37 GMT
- Title: Knowledge Navigator: LLM-guided Browsing Framework for Exploratory Search in Scientific Literature
- Authors: Uri Katz, Mosh Levy, Yoav Goldberg,
- Abstract summary: We present Knowledge Navigator, a system designed to enhance exploratory search abilities.
It organizes retrieved documents into a navigable, two-level hierarchy of named and descriptive scientific topics and subtopics.
- Score: 48.572336666741194
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The exponential growth of scientific literature necessitates advanced tools for effective knowledge exploration. We present Knowledge Navigator, a system designed to enhance exploratory search abilities by organizing and structuring the retrieved documents from broad topical queries into a navigable, two-level hierarchy of named and descriptive scientific topics and subtopics. This structured organization provides an overall view of the research themes in a domain, while also enabling iterative search and deeper knowledge discovery within specific subtopics by allowing users to refine their focus and retrieve additional relevant documents. Knowledge Navigator combines LLM capabilities with cluster-based methods to enable an effective browsing method. We demonstrate our approach's effectiveness through automatic and manual evaluations on two novel benchmarks, CLUSTREC-COVID and SCITOC. Our code, prompts, and benchmarks are made publicly available.
Related papers
- Taxonomy-guided Semantic Indexing for Academic Paper Search [51.07749719327668]
TaxoIndex is a semantic index framework for academic paper search.
It organizes key concepts from papers as a semantic index guided by an academic taxonomy.
It can be flexibly employed to enhance existing dense retrievers.
arXiv Detail & Related papers (2024-10-25T00:00:17Z) - Fine-tuning and Prompt Engineering with Cognitive Knowledge Graphs for Scholarly Knowledge Organization [0.14999444543328289]
This research focuses on effectively conveying structured scholarly knowledge by utilizing large language models (LLMs)
LLMs categorize scholarly articles and describe their contributions in a structured and comparable manner.
Our methodology involves harnessing LLM knowledge, and complementing it with domain expert-verified scholarly data sourced from a CKG.
arXiv Detail & Related papers (2024-09-10T11:31:02Z) - Automating Knowledge Discovery from Scientific Literature via LLMs: A Dual-Agent Approach with Progressive Ontology Prompting [59.97247234955861]
We introduce a novel framework based on large language models (LLMs) that combines a progressive prompting algorithm with a dual-agent system, named LLM-Duo.
Our method identifies 2,421 interventions from 64,177 research articles in the speech-language therapy domain.
arXiv Detail & Related papers (2024-08-20T16:42:23Z) - Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph [1.7418328181959968]
The proposed research aims to develop an innovative semantic query processing system.
It enables users to obtain comprehensive information about research works produced by Computer Science (CS) researchers at the Australian National University.
arXiv Detail & Related papers (2024-05-24T09:19:45Z) - Improving Retrieval in Theme-specific Applications using a Corpus
Topical Taxonomy [52.426623750562335]
We introduce ToTER (Topical taxonomy Enhanced Retrieval) framework.
ToTER identifies the central topics of queries and documents with the guidance of the taxonomy, and exploits their topical relatedness to supplement missing contexts.
As a plug-and-play framework, ToTER can be flexibly employed to enhance various PLM-based retrievers.
arXiv Detail & Related papers (2024-03-07T02:34:54Z) - DiscoverPath: A Knowledge Refinement and Retrieval System for
Interdisciplinarity on Biomedical Research [96.10765714077208]
Traditional keyword-based search engines fall short in assisting users who may not be familiar with specific terminologies.
We present a knowledge graph-based paper search engine for biomedical research to enhance the user experience.
The system, dubbed DiscoverPath, employs Named Entity Recognition (NER) and part-of-speech (POS) tagging to extract terminologies and relationships from article abstracts to create a KG.
arXiv Detail & Related papers (2023-09-04T20:52:33Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
We introduce a new platform, AI Research Navigator, that combines classical keyword search with neural retrieval to discover and organize relevant literature.
We give an overview of the overall architecture of the system and of the components for document analysis, question answering, search, analytics, expert search, and recommendations.
arXiv Detail & Related papers (2020-10-30T19:12:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.