論文の概要: PID: Prompt-Independent Data Protection Against Latent Diffusion Models
- arxiv url: http://arxiv.org/abs/2406.15305v1
- Date: Fri, 14 Jun 2024 11:56:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 07:21:03.999472
- Title: PID: Prompt-Independent Data Protection Against Latent Diffusion Models
- Title(参考訳): PID:潜伏拡散モデルに対するプロンプト非依存データ保護
- Authors: Ang Li, Yichuan Mo, Mingjie Li, Yisen Wang,
- Abstract要約: 大量の個人画像がオンラインでアクセス可能であることを考えると、この機能は市民のプライバシーに対する重大な懸念を引き起こす。
我々は, LDMに対するプライバシー保護のために, textbfPrompt-Independent Defense (PID) と呼ばれるシンプルで効果的な方法を提案する。
- 参考スコア(独自算出の注目度): 32.1299481922554
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The few-shot fine-tuning of Latent Diffusion Models (LDMs) has enabled them to grasp new concepts from a limited number of images. However, given the vast amount of personal images accessible online, this capability raises critical concerns about civil privacy. While several previous defense methods have been developed to prevent such misuse of LDMs, they typically assume that the textual prompts used by data protectors exactly match those employed by data exploiters. In this paper, we first empirically demonstrate that breaking this assumption, i.e., in cases where discrepancies exist between the textual conditions used by protectors and exploiters, could substantially reduce the effectiveness of these defenses. Furthermore, considering the visual encoder's independence from textual prompts, we delve into the visual encoder and thoroughly investigate how manipulating the visual encoder affects the few-shot fine-tuning process of LDMs. Drawing on these insights, we propose a simple yet effective method called \textbf{Prompt-Independent Defense (PID)} to safeguard privacy against LDMs. We show that PID can act as a strong privacy shield on its own while requiring significantly less computational power. We believe our studies, along with the comprehensive understanding and new defense method, provide a notable advance toward reliable data protection against LDMs.
- Abstract(参考訳): LDM(Latent Diffusion Models)の微調整により、限られた数の画像から新しい概念を把握できるようになった。
しかし、大量の個人画像がオンラインでアクセス可能であることを考えると、この機能は市民のプライバシーに対する重大な懸念を引き起こす。
このようなLCDの誤用を防ぐために、いくつかの従来の防衛手法が開発されているが、データプロテクターが使用するテキストプロンプトは、データエクスプローラーが使用するものと正確に一致していると想定されている。
本稿では,この仮定を破ること,すなわちプロテクターとエクスプローラーが使用するテクスト条件の相違が,これらの防御効果を著しく低下させることを実証的に実証する。
さらに、テキストプロンプトからの視覚エンコーダの独立性を考慮して、視覚エンコーダを探索し、視覚エンコーダを操作することがLCDの微調整過程にどう影響するかを徹底的に検討する。
これらの知見に基づいて, LDMに対するプライバシー保護を目的とした, 簡易かつ効果的な方法である「textbf{Prompt-Independent Defense (PID)」を提案する。
PIDは、計算能力を大幅に低下させながら、自分自身で強力なプライバシシールドとして振る舞うことができることを示す。
我々の研究は、総合的な理解と新しい防衛手法と共に、LCDに対する信頼性のあるデータ保護に向けた顕著な進歩をもたらすと信じている。
関連論文リスト
- Effective and Efficient Adversarial Detection for Vision-Language Models via A Single Vector [97.92369017531038]
Diverse hArmful Responses (RADAR) を用いた新しい laRge-scale Adervsarial 画像データセットを構築した。
そこで我々は,視覚言語モデル (VLM) の隠れ状態から抽出した1つのベクトルを利用して,入力中の良質な画像に対して対向画像を検出する,新しいiN時間埋め込み型AdveRSarial Image Detectction (NEARSIDE) 法を開発した。
論文 参考訳(メタデータ) (2024-10-30T10:33:10Z) - Pixel Is Not A Barrier: An Effective Evasion Attack for Pixel-Domain Diffusion Models [9.905296922309157]
拡散モデルは高品質な画像合成のための強力な生成モデルとして登場し、それに基づく画像編集技術も数多くある。
従来の研究は、知覚不能な摂動を加えることで、画像の拡散に基づく編集を防ごうとしてきた。
本研究は,UNETの脆弱性を悪用した特徴表現攻撃損失と,保護された画像の自然性を高めるための潜在最適化戦略を備えた,新たな攻撃フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-21T17:56:34Z) - Pixel is a Barrier: Diffusion Models Are More Adversarially Robust Than We Think [14.583181596370386]
拡散モデルの逆例は、安全上の問題に対する解決策として広く使われている。
このことは、拡散モデルがほとんどの深層モデルのような敵攻撃に対して脆弱であると考えることを誤解させるかもしれない。
本稿では, 勾配をベースとしたホワイトボックス攻撃がLDM攻撃に有効であっても, PDM攻撃に失敗する,という新たな知見を示す。
論文 参考訳(メタデータ) (2024-04-20T08:28:43Z) - Latent Diffusion Models for Attribute-Preserving Image Anonymization [4.080920304681247]
本稿では,遅延拡散モデル(LDM)に基づく画像匿名化への最初のアプローチを提案する。
CAFLaGE-Baseは、事前訓練された制御ネットと、実画像と匿名画像との距離を増やすために設計された新しい制御機構を組み合わせた2つのLCMを提案する。
論文 参考訳(メタデータ) (2024-03-21T19:09:21Z) - Visual Privacy Auditing with Diffusion Models [52.866433097406656]
本稿では,拡散モデル(DM)に基づくリコンストラクション攻撃を提案する。
本研究では,(1)実世界のデータ漏洩が再建の成功に大きく影響すること,(2)現在のリビルド境界がデータ先行によるリスクをうまくモデル化していないこと,(3)DMは,プライバシー漏洩を可視化するための効果的な監査ツールとして機能すること,を示す。
論文 参考訳(メタデータ) (2024-03-12T12:18:55Z) - Silent Guardian: Protecting Text from Malicious Exploitation by Large Language Models [63.91178922306669]
大規模言語モデル(LLM)に対するテキスト保護機構であるSilent Guardianを紹介する。
保護されるテキストを慎重に修正することで、TPEはLDMを誘導して最初にエンドトークンをサンプリングし、直接相互作用を終了させることができる。
本研究では,SGがターゲットテキストを種々の構成で効果的に保護し,保護成功率の約100%を達成できることを示す。
論文 参考訳(メタデータ) (2023-12-15T10:30:36Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - Toward effective protection against diffusion based mimicry through
score distillation [15.95715097030366]
拡散に基づく模倣パイプラインから画像を保護するため、摂動を追加する努力がなされている。
既存の手法のほとんどは非効率であり、個々のユーザーが使うには実用的ではない。
本稿では,潜伏拡散モデルに対する攻撃に関する新たな知見と,より効果的な保護のための新しいプラグ・アンド・プレイ戦略を提案する。
論文 参考訳(メタデータ) (2023-10-02T18:56:12Z) - Defending Pre-trained Language Models as Few-shot Learners against
Backdoor Attacks [72.03945355787776]
軽快でプラガブルで効果的な PLM 防御である MDP を,少人数の学習者として提唱する。
我々は,MDPが攻撃の有効性と回避性の両方を選択できる興味深いジレンマを発生させることを解析的に示す。
論文 参考訳(メタデータ) (2023-09-23T04:41:55Z) - The Devil's Advocate: Shattering the Illusion of Unexploitable Data
using Diffusion Models [14.018862290487617]
データ保護の摂動に対抗して、慎重に設計された分極処理が可能であることを示す。
AVATARと呼ばれる我々のアプローチは、最近のアベイラビリティーアタックに対して最先端のパフォーマンスを提供する。
論文 参考訳(メタデータ) (2023-03-15T10:20:49Z) - Defending against Reconstruction Attacks with R\'enyi Differential
Privacy [72.1188520352079]
レコンストラクション攻撃により、敵は訓練されたモデルのみにアクセスすることで、トレーニングセットのデータサンプルを再生することができる。
差別化プライバシはこのような攻撃に対する既知の解決策であるが、比較的大きなプライバシ予算で使用されることが多い。
また、同機構により、従来の文献よりも優れた復元攻撃に対するプライバシー保証を導出できることを示す。
論文 参考訳(メタデータ) (2022-02-15T18:09:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。