論文の概要: Pixel Is Not A Barrier: An Effective Evasion Attack for Pixel-Domain Diffusion Models
- arxiv url: http://arxiv.org/abs/2408.11810v1
- Date: Wed, 21 Aug 2024 17:56:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 15:58:35.761993
- Title: Pixel Is Not A Barrier: An Effective Evasion Attack for Pixel-Domain Diffusion Models
- Title(参考訳): Pixelはバリアではない:Pixel-Domain拡散モデルに対する効果的な侵入攻撃
- Authors: Chun-Yen Shih, Li-Xuan Peng, Jia-Wei Liao, Ernie Chu, Cheng-Fu Chou, Jun-Cheng Chen,
- Abstract要約: 拡散モデルは高品質な画像合成のための強力な生成モデルとして登場し、それに基づく画像編集技術も数多くある。
従来の研究は、知覚不能な摂動を加えることで、画像の拡散に基づく編集を防ごうとしてきた。
本研究は,UNETの脆弱性を悪用した特徴表現攻撃損失と,保護された画像の自然性を高めるための潜在最適化戦略を備えた,新たな攻撃フレームワークを提案する。
- 参考スコア(独自算出の注目度): 9.905296922309157
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diffusion Models have emerged as powerful generative models for high-quality image synthesis, with many subsequent image editing techniques based on them. However, the ease of text-based image editing introduces significant risks, such as malicious editing for scams or intellectual property infringement. Previous works have attempted to safeguard images from diffusion-based editing by adding imperceptible perturbations. These methods are costly and specifically target prevalent Latent Diffusion Models (LDMs), while Pixel-domain Diffusion Models (PDMs) remain largely unexplored and robust against such attacks. Our work addresses this gap by proposing a novel attacking framework with a feature representation attack loss that exploits vulnerabilities in denoising UNets and a latent optimization strategy to enhance the naturalness of protected images. Extensive experiments demonstrate the effectiveness of our approach in attacking dominant PDM-based editing methods (e.g., SDEdit) while maintaining reasonable protection fidelity and robustness against common defense methods. Additionally, our framework is extensible to LDMs, achieving comparable performance to existing approaches.
- Abstract(参考訳): 拡散モデルは高品質な画像合成のための強力な生成モデルとして登場し、それに基づく画像編集技術も数多くある。
しかし、テキストベースの画像編集の容易さは、詐欺の悪意のある編集や知的財産権侵害などの重大なリスクをもたらす。
従来の研究は、知覚不能な摂動を加えることによって、画像の拡散に基づく編集を防ごうとしてきた。
これらの手法は、高価で具体的には遅延拡散モデル(LDM)をターゲットにしているが、Pixelドメイン拡散モデル(PDM)は、そのような攻撃に対してほとんど探索されておらず、堅牢である。
我々の研究は、UNETの脆弱性を利用した特徴表現攻撃損失と、保護された画像の自然性を高めるための潜在最適化戦略を備えた、新たな攻撃フレームワークを提案することで、このギャップに対処する。
広汎な実験により, PDM ベースの編集手法 (SDEdit など) に対するアプローチの有効性が実証された。
さらに、我々のフレームワークはLDMに拡張可能であり、既存のアプローチに匹敵するパフォーマンスを実現しています。
関連論文リスト
- DiffusionGuard: A Robust Defense Against Malicious Diffusion-based Image Editing [93.45507533317405]
DiffusionGuardは、拡散ベースの画像編集モデルによる不正な編集に対する堅牢で効果的な防御方法である。
拡散過程の初期段階をターゲットとした対向雑音を発生させる新しい目的を提案する。
また,テスト期間中の各種マスクに対するロバスト性を高めるマスク強化手法も導入した。
論文 参考訳(メタデータ) (2024-10-08T05:19:19Z) - DDAP: Dual-Domain Anti-Personalization against Text-to-Image Diffusion Models [18.938687631109925]
拡散に基づくパーソナライズされたビジュアルコンテンツ生成技術は、大きなブレークスルーを達成した。
しかし、偽のニュースや個人をターゲットとするコンテンツを作るのに誤用された場合、これらの技術は社会的な危害をもたらす可能性がある。
本稿では,新しいDual-Domain Anti-Personalization framework(DDAP)を紹介する。
これら2つの手法を交互に組み合わせることで、DDAPフレームワークを構築し、両方のドメインの強みを効果的に活用する。
論文 参考訳(メタデータ) (2024-07-29T16:11:21Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
本稿では,視覚言語モデルにおける対角的サンプル検出のための,新しい,しかしエレガントなアプローチを提案する。
本手法は,テキスト・トゥ・イメージ(T2I)モデルを用いて,ターゲットVLMが生成したキャプションに基づいて画像を生成する。
異なるデータセットで実施した経験的評価により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-06-13T15:55:04Z) - JIGMARK: A Black-Box Approach for Enhancing Image Watermarks against Diffusion Model Edits [76.25962336540226]
JIGMARKは、コントラスト学習による堅牢性を高める、第一級の透かし技術である。
本評価の結果,JIGMARKは既存の透かし法をはるかに上回っていることがわかった。
論文 参考訳(メタデータ) (2024-06-06T03:31:41Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
本稿では,生の画素空間ではなく,潜在空間における非知覚的対角的アイデンティティ摂動を生成できる統一的なフレームワークAdv-Diffusionを提案する。
具体的には,周囲のセマンティックな摂動を生成するために,個人性に敏感な条件付き拡散生成モデルを提案する。
設計された適応強度に基づく対向摂動アルゴリズムは、攻撃の伝達性とステルス性の両方を確保することができる。
論文 参考訳(メタデータ) (2023-12-18T15:25:23Z) - Toward effective protection against diffusion based mimicry through
score distillation [15.95715097030366]
拡散に基づく模倣パイプラインから画像を保護するため、摂動を追加する努力がなされている。
既存の手法のほとんどは非効率であり、個々のユーザーが使うには実用的ではない。
本稿では,潜伏拡散モデルに対する攻撃に関する新たな知見と,より効果的な保護のための新しいプラグ・アンド・プレイ戦略を提案する。
論文 参考訳(メタデータ) (2023-10-02T18:56:12Z) - Unlearnable Examples for Diffusion Models: Protect Data from Unauthorized Exploitation [25.55296442023984]
本研究では,不正な利用から画像を保護するために,Unlearnable Diffusion Perturbationを提案する。
この成果は、AI生成コンテンツに対するプライバシーと著作権の保護に寄与するため、現実世界のシナリオにおいて重要な意味を持つ。
論文 参考訳(メタデータ) (2023-06-02T20:19:19Z) - DiffProtect: Generate Adversarial Examples with Diffusion Models for
Facial Privacy Protection [64.77548539959501]
DiffProtectは最先端の方法よりも自然に見える暗号化画像を生成する。
例えば、CelebA-HQとFFHQのデータセットで24.5%と25.1%の絶対的な改善が達成されている。
論文 参考訳(メタデータ) (2023-05-23T02:45:49Z) - JPEG Compressed Images Can Bypass Protections Against AI Editing [48.340067730457584]
悪意ある編集から画像を保護する手段として、知覚不能な摂動が提案されている。
上記の摂動はJPEG圧縮に対して堅牢ではないことがわかった。
論文 参考訳(メタデータ) (2023-04-05T05:30:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。