An End-to-End, Segmentation-Free, Arabic Handwritten Recognition Model on KHATT
- URL: http://arxiv.org/abs/2406.15329v1
- Date: Fri, 21 Jun 2024 17:42:07 GMT
- Title: An End-to-End, Segmentation-Free, Arabic Handwritten Recognition Model on KHATT
- Authors: Sondos Aabed, Ahmad Khairaldin,
- Abstract summary: An end-to-end, segmentation-free, deep learning model trained from scratch is proposed.
The training phase yields remarkable results 84% recognition rate on the test dataset at the character level and 71% on the word level.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: An end-to-end, segmentation-free, deep learning model trained from scratch is proposed, leveraging DCNN for feature extraction, alongside Bidirectional Long-Short Term Memory (BLSTM) for sequence recognition and Connectionist Temporal Classification (CTC) loss function on the KHATT database. The training phase yields remarkable results 84% recognition rate on the test dataset at the character level and 71% on the word level, establishing an image-based sequence recognition framework that operates without segmentation only at the line level. The analysis and preprocessing of the KFUPM Handwritten Arabic TexT (KHATT) database are also presented. Finally, advanced image processing techniques, including filtering, transformation, and line segmentation are implemented. The importance of this work is highlighted by its wide-ranging applications. Including digitizing, documentation, archiving, and text translation in fields such as banking. Moreover, AHR serves as a pivotal tool for making images searchable, enhancing information retrieval capabilities, and enabling effortless editing. This functionality significantly reduces the time and effort required for tasks such as Arabic data organization and manipulation.
Related papers
- Text-driven Adaptation of Foundation Models for Few-shot Surgical Workflow Analysis [47.74467806074654]
Surg-FTDA (Few-shot Text-driven Adaptation) is designed to handle various surgical workflow analysis tasks with minimal paired image-label data.
First, Few-shot selection-based modality alignment selects a small subset of images and aligns their embeddings with text embeddings from the downstream task.
Second, Text-driven adaptation leverages only text data to train a decoder, eliminating the need for paired image-text data.
arXiv Detail & Related papers (2025-01-16T14:18:06Z) - Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
We propose AuxSegNet+, a weakly supervised auxiliary learning framework to explore the rich information from saliency maps.
We also propose a cross-task affinity learning mechanism to learn pixel-level affinities from the saliency and segmentation feature maps.
arXiv Detail & Related papers (2024-03-02T10:03:21Z) - Diffusion Models for Open-Vocabulary Segmentation [79.02153797465324]
OVDiff is a novel method that leverages generative text-to-image diffusion models for unsupervised open-vocabulary segmentation.
It relies solely on pre-trained components and outputs the synthesised segmenter directly, without training.
arXiv Detail & Related papers (2023-06-15T17:51:28Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
We propose TextFormer, a query-based end-to-end text spotter with Transformer architecture.
TextFormer builds upon an image encoder and a text decoder to learn a joint semantic understanding for multi-task modeling.
It allows for mutual training and optimization of classification, segmentation, and recognition branches, resulting in deeper feature sharing.
arXiv Detail & Related papers (2023-06-06T03:37:41Z) - Uncovering the Handwritten Text in the Margins: End-to-end Handwritten
Text Detection and Recognition [0.840835093659811]
This work presents an end-to-end framework for automatic detection and recognition of handwritten marginalia.
It uses data augmentation and transfer learning to overcome training data scarcity.
The effectiveness of the proposed framework has been empirically evaluated on the data from early book collections found in the Uppsala University Library in Sweden.
arXiv Detail & Related papers (2023-03-10T14:00:53Z) - Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone [170.85076677740292]
We present FIBER (Fusion-In-the-Backbone-basedER), a new model architecture for vision-language (VL) pre-training.
Instead of having dedicated transformer layers for fusion after the uni-modal backbones, FIBER pushes multimodal fusion deep into the model.
We conduct comprehensive experiments on a wide range of VL tasks, ranging from VQA, image captioning, and retrieval, to phrase grounding, referring expression comprehension, and object detection.
arXiv Detail & Related papers (2022-06-15T16:41:29Z) - Prefix Conditioning Unifies Language and Label Supervision [84.11127588805138]
We show that dataset biases negatively affect pre-training by reducing the generalizability of learned representations.
In experiments, we show that this simple technique improves the performance in zero-shot image recognition accuracy and robustness to the image-level distribution shift.
arXiv Detail & Related papers (2022-06-02T16:12:26Z) - A Simple Baseline for Zero-shot Semantic Segmentation with Pre-trained
Vision-language Model [61.58071099082296]
It is unclear how to make zero-shot recognition working well on broader vision problems, such as object detection and semantic segmentation.
In this paper, we target for zero-shot semantic segmentation, by building it on an off-the-shelf pre-trained vision-language model, i.e., CLIP.
Our experimental results show that this simple framework surpasses previous state-of-the-arts by a large margin.
arXiv Detail & Related papers (2021-12-29T18:56:18Z) - Exploiting the relationship between visual and textual features in
social networks for image classification with zero-shot deep learning [0.0]
In this work, we propose a classifier ensemble based on the transferable learning capabilities of the CLIP neural network architecture.
Our experiments, based on image classification tasks according to the labels of the Places dataset, are performed by first considering only the visual part.
Considering the associated texts to the images can help to improve the accuracy depending on the goal.
arXiv Detail & Related papers (2021-07-08T10:54:59Z) - Off-Line Arabic Handwritten Words Segmentation using Morphological
Operators [0.0]
The framework is proposed based on three steps: pre-processing, segmentation, and evaluation.
The proposed model achieved the highest accuracy when compared with the related works.
arXiv Detail & Related papers (2021-01-07T23:38:53Z) - SCATTER: Selective Context Attentional Scene Text Recognizer [16.311256552979835]
Scene Text Recognition (STR) is the task of recognizing text against complex image backgrounds.
Current state-of-the-art (SOTA) methods still struggle to recognize text written in arbitrary shapes.
We introduce a novel architecture for STR, named Selective Context ATtentional Text Recognizer (SCATTER)
arXiv Detail & Related papers (2020-03-25T09:20:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.