Privacy Preserved Blood Glucose Level Cross-Prediction: An Asynchronous Decentralized Federated Learning Approach
- URL: http://arxiv.org/abs/2406.15346v1
- Date: Fri, 21 Jun 2024 17:57:39 GMT
- Title: Privacy Preserved Blood Glucose Level Cross-Prediction: An Asynchronous Decentralized Federated Learning Approach
- Authors: Chengzhe Piao, Taiyu Zhu, Yu Wang, Stephanie E Baldeweg, Paul Taylor, Pantelis Georgiou, Jiahao Sun, Jun Wang, Kezhi Li,
- Abstract summary: Newly diagnosed Type 1 Diabetes (T1D) patients often struggle to obtain effective Blood Glucose (BG) prediction models.
We propose "GluADFL", blood Glucose prediction by Asynchronous Decentralized Federated Learning.
- Score: 13.363740869325646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Newly diagnosed Type 1 Diabetes (T1D) patients often struggle to obtain effective Blood Glucose (BG) prediction models due to the lack of sufficient BG data from Continuous Glucose Monitoring (CGM), presenting a significant "cold start" problem in patient care. Utilizing population models to address this challenge is a potential solution, but collecting patient data for training population models in a privacy-conscious manner is challenging, especially given that such data is often stored on personal devices. Considering the privacy protection and addressing the "cold start" problem in diabetes care, we propose "GluADFL", blood Glucose prediction by Asynchronous Decentralized Federated Learning. We compared GluADFL with eight baseline methods using four distinct T1D datasets, comprising 298 participants, which demonstrated its superior performance in accurately predicting BG levels for cross-patient analysis. Furthermore, patients' data might be stored and shared across various communication networks in GluADFL, ranging from highly interconnected (e.g., random, performs the best among others) to more structured topologies (e.g., cluster and ring), suitable for various social networks. The asynchronous training framework supports flexible participation. By adjusting the ratios of inactive participants, we found it remains stable if less than 70% are inactive. Our results confirm that GluADFL offers a practical, privacy-preserving solution for BG prediction in T1D, significantly enhancing the quality of diabetes management.
Related papers
- FedGlu: A personalized federated learning-based glucose forecasting algorithm for improved performance in glycemic excursion regions [4.073768455373616]
Continuous glucose monitoring (CGM) devices provide real-time glucose monitoring and timely alerts for glycemic excursions.
Rare events like hypoglycemia and hyperglycemia remain challenging due to their infrequency.
We propose a novel Hypo-Hyper (HH) loss function, which significantly improves performance in the glycemic excursion regions.
arXiv Detail & Related papers (2024-08-25T19:51:27Z) - Federated Diabetes Prediction in Canadian Adults Using Real-world Cross-Province Primary Care Data [0.04090757602725897]
This paper introduces a federated learning approach, which amalgamates predictive models without centralized data storage and processing, thus avoiding privacy issues.
This marks the first application of federated learning to predict diabetes using real clinical datasets in Canada extracted from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN) without crossprovince patient data sharing.
arXiv Detail & Related papers (2024-08-21T22:47:21Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
We present GluFormer, a generative foundation model on biomedical temporal data based on a transformer architecture.
GluFormer generalizes to 15 different external datasets, including 4936 individuals across 5 different geographical regions.
It can also predict onset of future health outcomes even 4 years in advance.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - GARNN: An Interpretable Graph Attentive Recurrent Neural Network for
Predicting Blood Glucose Levels via Multivariate Time Series [12.618792803757714]
We propose interpretable graph attentive neural networks (GARNNs) to model multi-modal data.
GARNNs achieve the best prediction accuracy and provide high-quality temporal interpretability.
These findings underline the potential of GARNN as a robust tool for improving diabetes care.
arXiv Detail & Related papers (2024-02-26T01:18:53Z) - Blood Glucose Level Prediction: A Graph-based Explainable Method with
Federated Learning [1.6317061277457001]
In the UK, approximately 400,000 people with type 1 diabetes rely on insulin delivery due to insufficient pancreatic insulin production.
CGM, tracking BG every 5 minutes, enables effective blood glucose level prediction (BGLP) by considering factors like carbohydrate intake and insulin delivery.
arXiv Detail & Related papers (2023-12-19T19:19:35Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - Deep Personalized Glucose Level Forecasting Using Attention-based
Recurrent Neural Networks [5.250950284616893]
We study the problem of blood glucose forecasting and provide a deep personalized solution.
We analyze the data and detect important patterns.
We empirically show the efficacy of our model on a real dataset.
arXiv Detail & Related papers (2021-06-02T01:36:53Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.