Federated Diabetes Prediction in Canadian Adults Using Real-world Cross-Province Primary Care Data
- URL: http://arxiv.org/abs/2408.12029v1
- Date: Wed, 21 Aug 2024 22:47:21 GMT
- Title: Federated Diabetes Prediction in Canadian Adults Using Real-world Cross-Province Primary Care Data
- Authors: Guojun Tang, Jason E. Black, Tyler S. Williamson, Steve H. Drew,
- Abstract summary: This paper introduces a federated learning approach, which amalgamates predictive models without centralized data storage and processing, thus avoiding privacy issues.
This marks the first application of federated learning to predict diabetes using real clinical datasets in Canada extracted from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN) without crossprovince patient data sharing.
- Score: 0.04090757602725897
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integrating Electronic Health Records (EHR) and the application of machine learning present opportunities for enhancing the accuracy and accessibility of data-driven diabetes prediction. In particular, developing data-driven machine learning models can provide early identification of patients with high risk for diabetes, potentially leading to more effective therapeutic strategies and reduced healthcare costs. However, regulation restrictions create barriers to developing centralized predictive models. This paper addresses the challenges by introducing a federated learning approach, which amalgamates predictive models without centralized data storage and processing, thus avoiding privacy issues. This marks the first application of federated learning to predict diabetes using real clinical datasets in Canada extracted from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN) without crossprovince patient data sharing. We address class-imbalance issues through downsampling techniques and compare federated learning performance against province-based and centralized models. Experimental results show that the federated MLP model presents a similar or higher performance compared to the model trained with the centralized approach. However, the federated logistic regression model showed inferior performance compared to its centralized peer.
Related papers
- Federated GNNs for EEG-Based Stroke Assessment [1.3274340213871945]
This study proposes a novel method that combines federated learning (FL) and Graph Neural Networks (GNNs) to predict stroke severity.
Our approach enables multiple hospitals to jointly train a shared GNN model on their local EEG data without exchanging patient information.
arXiv Detail & Related papers (2024-11-04T17:13:35Z) - Comparative Analysis of LSTM Neural Networks and Traditional Machine Learning Models for Predicting Diabetes Patient Readmission [0.0]
This study uses the Diabetes 130-US Hospitals dataset for analysis and prediction of readmission patients by various machine learning models.
LightGBM turned out to be the best traditional model, while XGBoost was the runner-up.
This study demonstrates that model selection, validation, and interpretability are key steps in predictive healthcare modeling.
arXiv Detail & Related papers (2024-06-28T15:06:22Z) - Privacy Preserved Blood Glucose Level Cross-Prediction: An Asynchronous Decentralized Federated Learning Approach [13.363740869325646]
Newly diagnosed Type 1 Diabetes (T1D) patients often struggle to obtain effective Blood Glucose (BG) prediction models.
We propose "GluADFL", blood Glucose prediction by Asynchronous Decentralized Federated Learning.
arXiv Detail & Related papers (2024-06-21T17:57:39Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Federated Learning for Early Dropout Prediction on Healthy Ageing
Applications [0.0]
We present a federated machine learning (FML) approach that minimizes privacy concerns and enables distributed training, without transferring individual data.
Our results show that data selection and class imbalance handling techniques significantly improve the predictive accuracy of models trained under FML.
arXiv Detail & Related papers (2023-09-08T13:17:06Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Federated Learning of Medical Concepts Embedding using BEHRT [0.0]
We propose a federated learning approach for learning medical concepts embedding.
Our approach is based on embedding model like BEHRT, a deep neural sequence model for EHR.
We compare the performance of a model trained with FL against a model trained on centralized data.
arXiv Detail & Related papers (2023-05-22T14:05:39Z) - Density-Aware Personalized Training for Risk Prediction in Imbalanced
Medical Data [89.79617468457393]
Training models with imbalance rate (class density discrepancy) may lead to suboptimal prediction.
We propose a framework for training models for this imbalance issue.
We demonstrate our model's improved performance in real-world medical datasets.
arXiv Detail & Related papers (2022-07-23T00:39:53Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.