FedGlu: A personalized federated learning-based glucose forecasting algorithm for improved performance in glycemic excursion regions
- URL: http://arxiv.org/abs/2408.13926v1
- Date: Sun, 25 Aug 2024 19:51:27 GMT
- Title: FedGlu: A personalized federated learning-based glucose forecasting algorithm for improved performance in glycemic excursion regions
- Authors: Darpit Dave, Kathan Vyas, Jagadish Kumaran Jayagopal, Alfredo Garcia, Madhav Erraguntla, Mark Lawley,
- Abstract summary: Continuous glucose monitoring (CGM) devices provide real-time glucose monitoring and timely alerts for glycemic excursions.
Rare events like hypoglycemia and hyperglycemia remain challenging due to their infrequency.
We propose a novel Hypo-Hyper (HH) loss function, which significantly improves performance in the glycemic excursion regions.
- Score: 4.073768455373616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous glucose monitoring (CGM) devices provide real-time glucose monitoring and timely alerts for glycemic excursions, improving glycemic control among patients with diabetes. However, identifying rare events like hypoglycemia and hyperglycemia remain challenging due to their infrequency. Moreover, limited access to sensitive patient data hampers the development of robust machine learning models. Our objective is to accurately predict glycemic excursions while addressing data privacy concerns. To tackle excursion prediction, we propose a novel Hypo-Hyper (HH) loss function, which significantly improves performance in the glycemic excursion regions. The HH loss function demonstrates a 46% improvement over mean-squared error (MSE) loss across 125 patients. To address privacy concerns, we propose FedGlu, a machine learning model trained in a federated learning (FL) framework. FL allows collaborative learning without sharing sensitive data by training models locally and sharing only model parameters across other patients. FedGlu achieves a 35% superior glycemic excursion detection rate compared to local models. This improvement translates to enhanced performance in predicting both, hypoglycemia and hyperglycemia, for 105 out of 125 patients. These results underscore the effectiveness of the proposed HH loss function in augmenting the predictive capabilities of glucose predictions. Moreover, implementing models within a federated learning framework not only ensures better predictive capabilities but also safeguards sensitive data concurrently.
Related papers
- AttenGluco: Multimodal Transformer-Based Blood Glucose Forecasting on AI-READI Dataset [8.063401183752347]
Diabetes is a chronic metabolic disorder characterized by persistently high blood glucose levels (BGLs)
Recent deep learning models show promise in improving BGL prediction.
We propose AttenGluco, a multimodal Transformer-based framework for long-term blood glucose prediction.
arXiv Detail & Related papers (2025-02-14T05:07:38Z) - Neural Conformal Control for Time Series Forecasting [54.96087475179419]
We introduce a neural network conformal prediction method for time series that enhances adaptivity in non-stationary environments.
Our approach acts as a neural controller designed to achieve desired target coverage, leveraging auxiliary multi-view data with neural network encoders.
We empirically demonstrate significant improvements in coverage and probabilistic accuracy, and find that our method is the only one that combines good calibration with consistency in prediction intervals.
arXiv Detail & Related papers (2024-12-24T03:56:25Z) - Let Curves Speak: A Continuous Glucose Monitor based Large Sensor Foundation Model for Diabetes Management [3.8195320624847833]
Integrating AI with continuous glucose monitoring holds promise for near-future glucose prediction.
CGM-LSM is pretrained on 15.96 million glucose records from 592 diabetes patients for near-future glucose prediction.
LSM achieved exceptional performance, with an rMSE of 29.81 mg/dL for type 1 diabetes patients and 23.49 mg/dL for type 2 diabetes patients in a two-hour prediction horizon.
arXiv Detail & Related papers (2024-12-12T21:35:13Z) - Hybrid Attention Model Using Feature Decomposition and Knowledge Distillation for Glucose Forecasting [6.466206145151128]
GlucoNet is an AI-powered sensor system for continuously monitoring behavioral and physiological health.
We propose a decomposition-based transformer model that incorporates patients' behavioral and physiological data.
G GlucoNet achieves a 60% improvement in RMSE and a 21% reduction in the number of parameters, using data obtained involving 12 participants with T1-Diabetes.
arXiv Detail & Related papers (2024-11-16T05:09:20Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [47.23780364438969]
We present GluFormer, a generative foundation model for CGM data that learns nuanced glycemic patterns and translates them into predictive representations of metabolic health.
GluFormer generalizes to 19 external cohorts spanning different ethnicities and ages, 5 countries, 8 CGM devices, and diverse pathophysiological states.
In a longitudinal study of 580 adults with CGM data and 12-year follow-up, GluFormer identifies individuals at elevated risk of developing diabetes more effectively than blood HbA1C%.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Toward Short-Term Glucose Prediction Solely Based on CGM Time Series [4.7066018521459725]
TimeGlu is an end-to-end pipeline for short-term glucose prediction based on CGM time series data.
It achieves state-of-the-art performance without the need for additional personal data from patients.
arXiv Detail & Related papers (2024-04-18T06:02:12Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
Continuous Glucose Monitoring (CGM) devices offer detailed, non-intrusive and real time insights into a patient's blood glucose concentrations.
Leveraging advanced Machine Learning (ML) Models as methods of prediction of future glucose levels, gives rise to substantial quality of life improvements.
arXiv Detail & Related papers (2023-02-24T19:10:40Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.