Querying Labeled Time Series Data with Scenario Programs
- URL: http://arxiv.org/abs/2406.17627v1
- Date: Tue, 25 Jun 2024 15:15:27 GMT
- Title: Querying Labeled Time Series Data with Scenario Programs
- Authors: Devan Shanker,
- Abstract summary: We propose a formal definition of what constitutes a match between a real-world labeled time series data item and a simulated scenario.
We present a definition and algorithm for matching scalable beyond the autonomous vehicles domain.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In order to ensure autonomous vehicles are safe for on-road deployment, simulation-based testing has become an integral complement to on-road testing. The rise in simulation testing and validation reflects a growing need to verify that AV behavior is consistent with desired outcomes even in edge case scenarios $-$ which may seldom or never appear in on-road testing data. This raises a critical question: to what extent are AV failures in simulation consistent with data collected from real-world testing? As a result of the gap between simulated and real sensor data (sim-to-real gap), failures in simulation can either be spurious (simulation- or simulator-specific issues) or relevant (safety-critical AV system issues). One possible method for validating if simulated time series failures are consistent with real world time series sensor data could involve retrieving instances of the failure scenario from a real-world time series dataset, in order to understand AV performance in these scenarios. Adopting this strategy, we propose a formal definition of what constitutes a match between a real-world labeled time series data item and a simulated scenario written from a fragment of the Scenic probabilistic programming language for simulation generation. With this definition of a match, we develop a querying algorithm that identifies the subset of a labeled time series dataset matching a given scenario. To allow this approach to be used to verify the safety of other cyber-physical systems (CPS), we present a definition and algorithm for matching scalable beyond the autonomous vehicles domain. Experiments demonstrate the precision and scalability of the algorithm for a set of challenging and uncommon time series scenarios identified from the nuScenes autonomous driving dataset. We include a full system implementation of the querying algorithm freely available for use across a wide range of CPS.
Related papers
- XLD: A Cross-Lane Dataset for Benchmarking Novel Driving View Synthesis [84.23233209017192]
This paper presents a novel driving view synthesis dataset and benchmark specifically designed for autonomous driving simulations.
The dataset is unique as it includes testing images captured by deviating from the training trajectory by 1-4 meters.
We establish the first realistic benchmark for evaluating existing NVS approaches under front-only and multi-camera settings.
arXiv Detail & Related papers (2024-06-26T14:00:21Z) - NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation and Benchmarking [65.24988062003096]
We present NAVSIM, a framework for benchmarking vision-based driving policies.
Our simulation is non-reactive, i.e., the evaluated policy and environment do not influence each other.
NAVSIM enabled a new competition held at CVPR 2024, where 143 teams submitted 463 entries, resulting in several new insights.
arXiv Detail & Related papers (2024-06-21T17:59:02Z) - Adaptive Splitting of Reusable Temporal Monitors for Rare Traffic Violations [23.757535844087354]
Two common issues arise when using existing techniques to produce an estimation.
This paper addresses both issues by interleaving rare-event sampling techniques with online specification monitoring algorithms.
We produce better estimates than Monte-Carlo and importance sampling in fewer simulations.
arXiv Detail & Related papers (2024-03-13T17:47:39Z) - Robust Continual Test-time Adaptation: Instance-aware BN and
Prediction-balanced Memory [58.72445309519892]
We present a new test-time adaptation scheme that is robust against non-i.i.d. test data streams.
Our novelty is mainly two-fold: (a) Instance-Aware Batch Normalization (IABN) that corrects normalization for out-of-distribution samples, and (b) Prediction-balanced Reservoir Sampling (PBRS) that simulates i.i.d. data stream from non-i.i.d. stream in a class-balanced manner.
arXiv Detail & Related papers (2022-08-10T03:05:46Z) - Querying Labelled Data with Scenario Programs for Sim-to-Real Validation [5.8720142291102135]
A fundamental question remains: are AV failure scenarios identified in simulation meaningful in reality, i.e., are they reproducible on the real system?
An approach to validate simulated failure scenarios is to identify instances of the scenario in a corpus of real data, and check if the failure persists on the real data.
We propose a formal definition of what it means for a labelled data item to match an abstract scenario, encoded as a scenario program using the SCENIC probabilistic programming language.
arXiv Detail & Related papers (2021-12-01T01:04:13Z) - Addressing the IEEE AV Test Challenge with Scenic and VerifAI [10.221093591444731]
This paper summarizes our formal approach to testing autonomous vehicles (AVs) in simulation for the IEEE AV Test Challenge.
We demonstrate a systematic testing framework leveraging our previous work on formally-driven simulation for intelligent cyber-physical systems.
arXiv Detail & Related papers (2021-08-20T04:51:27Z) - Deep Transformer Networks for Time Series Classification: The NPP Safety
Case [59.20947681019466]
An advanced temporal neural network referred to as the Transformer is used within a supervised learning fashion to model the time-dependent NPP simulation data.
The Transformer can learn the characteristics of the sequential data and yield promising performance with approximately 99% classification accuracy on the testing dataset.
arXiv Detail & Related papers (2021-04-09T14:26:25Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
We propose an alternative to sensor simulation, as sensor simulation is expensive and has large domain gaps.
We directly simulate the outputs of the self-driving vehicle's perception and prediction system, enabling realistic motion planning testing.
arXiv Detail & Related papers (2020-08-13T17:20:02Z) - Towards Automated Safety Coverage and Testing for Autonomous Vehicles
with Reinforcement Learning [0.3683202928838613]
Validation puts the autonomous vehicle system to the test in scenarios or situations that the system would likely encounter in everyday driving.
We propose using reinforcement learning (RL) to generate failure examples and unexpected traffic situations for the AV software implementation.
arXiv Detail & Related papers (2020-05-22T19:00:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.