論文の概要: Feature Purified Transformer With Cross-level Feature Guiding Decoder For Multi-class OOD and Anomaly Deteciton
- arxiv url: http://arxiv.org/abs/2406.15396v1
- Date: Tue, 30 Apr 2024 16:45:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 07:11:08.798687
- Title: Feature Purified Transformer With Cross-level Feature Guiding Decoder For Multi-class OOD and Anomaly Deteciton
- Title(参考訳): マルチクラスOODと異常検出のためのクロスレベル特徴誘導デコーダを用いた特徴浄化変換器
- Authors: Jerry Chun-Wei Lin, Pi-Wei Chen, Chao-Chun Chen,
- Abstract要約: 本稿では,FPM(Feature Purification Module)とCFGデコーダの2つの革新的なモジュールを組み込んだFUTUREGフレームワークを紹介する。
FPMは、潜在空間内の正規性境界を制約し、異常な特徴を効果的にフィルタリングする。
CFGデコーダは層単位でのエンコーダ表現を使用してフィルタされた特徴の再構築を誘導し、きめ細かい詳細を保存する。
- 参考スコア(独自算出の注目度): 22.59400036717643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstruction networks are prevalently used in unsupervised anomaly and Out-of-Distribution (OOD) detection due to their independence from labeled anomaly data. However, in multi-class datasets, the effectiveness of anomaly detection is often compromised by the models' generalized reconstruction capabilities, which allow anomalies to blend within the expanded boundaries of normality resulting from the added categories, thereby reducing detection accuracy. We introduce the FUTUREG framework, which incorporates two innovative modules: the Feature Purification Module (FPM) and the CFG Decoder. The FPM constrains the normality boundary within the latent space to effectively filter out anomalous features, while the CFG Decoder uses layer-wise encoder representations to guide the reconstruction of filtered features, preserving fine-grained details. Together, these modules enhance the reconstruction error for anomalies, ensuring high-quality reconstructions for normal samples. Our results demonstrate that FUTUREG achieves state-of-the-art performance in multi-class OOD settings and remains competitive in industrial anomaly detection scenarios.
- Abstract(参考訳): レコンストラクションネットワークは、ラベル付き異常データから独立しているため、教師なし異常とアウト・オブ・ディストリビューション(OOD)検出に広く利用されている。
しかし、マルチクラスデータセットでは、異常検出の有効性は、モデルが一般化した再構築能力によってしばしば損なわれ、これにより、付加されたカテゴリによる正規性の境界に異常がブレンドされ、検出精度が低下する。
本稿では,FPM(Feature Purification Module)とCFGデコーダの2つの革新的なモジュールを組み込んだFUTUREGフレームワークを紹介する。
FPMは遅延空間内の正規性境界を制約し、異常な特徴を効果的にフィルタリングする一方、CFGデコーダはフィルタされた特徴の再構築を誘導するために層単位でエンコーダ表現を使用する。
これらのモジュールは、異常の復元誤差を高め、正常サンプルの高品質な再構成を保証する。
以上の結果から,FUTUREGは多クラスOOD設定における最先端性能を実現し,産業的異常検出のシナリオにおいて競争力を維持していることが明らかとなった。
関連論文リスト
- A Hierarchically Feature Reconstructed Autoencoder for Unsupervised Anomaly Detection [8.512184778338806]
それは、階層的な特徴表現を抽出するための十分に訓練されたエンコーダと、これらの中間的特徴をエンコーダから再構成するデコーダで構成されている。
復号器が機能再構成に失敗すると異常を検知し、階層的特徴再構成の誤差を異常マップに集約して異常局所化を実現する。
実験の結果,提案手法はMNIST, Fashion-MNIST, CIFAR-10, MVTec異常検出データセットにおいて,最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-05-15T07:20:27Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
我々は、先行のない異常発生パラダイムを導入し、GRADと呼ばれる革新的な教師なし異常検出フレームワークを開発した。
PatchDiffは、様々な種類の異常パターンを効果的に公開する。
MVTec ADとMVTec LOCOデータセットの両方の実験も、前述の観測をサポートする。
論文 参考訳(メタデータ) (2023-12-26T07:08:06Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
本稿では,再構成の多様性を高めるため,DMAD(Diversity-Measurable Anomaly Detection)フレームワークを提案する。
PDMは基本的に、変形を埋め込みから分離し、最終的な異常スコアをより信頼性を高める。
論文 参考訳(メタデータ) (2023-03-09T05:52:42Z) - Two-stream Decoder Feature Normality Estimating Network for Industrial
Anomaly Detection [4.772323272202286]
正常な特徴と異常な特徴の両方を学習するための2ストリームデコーダネットワーク(TSDN)を提案する。
また、異常な特徴を排除し、異常領域の高品質な再構成を防止するための特徴正規度推定器(FNE)を提案する。
論文 参考訳(メタデータ) (2023-02-20T06:46:09Z) - Reference-Based Autoencoder for Surface Defect Detection [7.163582730053925]
種々のテクスチャ欠陥を正確に検査するために, RB-AE (unsupervised reference-based autoencoder) を提案する。
モデルが画素レベルの識別能力を得ることができるように、人工欠陥と新たな画素レベルの識別損失関数をトレーニングに活用する。
論文 参考訳(メタデータ) (2022-11-18T07:13:55Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
本稿では, 自己監督型マスク型畳み込み変圧器ブロック (SSMCTB) について述べる。
本研究では,従来の自己教師型予測畳み込み抑止ブロック(SSPCAB)を3次元マスク付き畳み込み層,チャンネルワイドアテンション用トランスフォーマー,およびハマーロスに基づく新たな自己教師型目標を用いて拡張する。
論文 参考訳(メタデータ) (2022-09-25T04:56:10Z) - Divide-and-Assemble: Learning Block-wise Memory for Unsupervised Anomaly
Detection [40.778313918994996]
再構成に基づく手法は、画像の教師なし異常検出において重要な役割を果たす。
本研究では,画像の再構成を分割組立手順として解釈する。
我々は、挑戦的なMVTec ADデータセット上で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-07-28T01:14:32Z) - Improving unsupervised anomaly localization by applying multi-scale
memories to autoencoders [14.075973859711567]
MMAE.MMAEは、教師なし学習におけるプロトタイプ機能として、対応する解像度スケールでスロットを更新する。
異常検出のために,各スケールでエンコードされた画像特徴を最も関連するプロトタイプ特徴に置き換えることで異常除去を実現する。
各種データセットに対する実験結果から,MMAEは異なるスケールで異常を除去し,複数のデータセットで良好に動作できることが確認された。
論文 参考訳(メタデータ) (2020-12-21T04:44:40Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。