論文の概要: Improving unsupervised anomaly localization by applying multi-scale
memories to autoencoders
- arxiv url: http://arxiv.org/abs/2012.11113v1
- Date: Mon, 21 Dec 2020 04:44:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-27 06:35:16.750291
- Title: Improving unsupervised anomaly localization by applying multi-scale
memories to autoencoders
- Title(参考訳): マルチスケールメモリをオートエンコーダに適用した教師なし異常局在の改善
- Authors: Yifei Yang, Shibing Xiang, Ruixiang Zhang
- Abstract要約: MMAE.MMAEは、教師なし学習におけるプロトタイプ機能として、対応する解像度スケールでスロットを更新する。
異常検出のために,各スケールでエンコードされた画像特徴を最も関連するプロトタイプ特徴に置き換えることで異常除去を実現する。
各種データセットに対する実験結果から,MMAEは異なるスケールで異常を除去し,複数のデータセットで良好に動作できることが確認された。
- 参考スコア(独自算出の注目度): 14.075973859711567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autoencoder and its variants have been widely applicated in anomaly
detection.The previous work memory-augmented deep autoencoder proposed
memorizing normality to detect anomaly, however it neglects the feature
discrepancy between different resolution scales, therefore we introduce
multi-scale memories to record scale-specific features and multi-scale
attention fuser between the encoding and decoding module of the autoencoder for
anomaly detection, namely MMAE.MMAE updates slots at corresponding resolution
scale as prototype features during unsupervised learning. For anomaly
detection, we accomplish anomaly removal by replacing the original encoded
image features at each scale with most relevant prototype features,and fuse
these features before feeding to the decoding module to reconstruct image.
Experimental results on various datasets testify that our MMAE successfully
removes anomalies at different scales and performs favorably on several
datasets compared to similar reconstruction-based methods.
- Abstract(参考訳): Autoencoder and its variants have been widely applicated in anomaly detection.The previous work memory-augmented deep autoencoder proposed memorizing normality to detect anomaly, however it neglects the feature discrepancy between different resolution scales, therefore we introduce multi-scale memories to record scale-specific features and multi-scale attention fuser between the encoding and decoding module of the autoencoder for anomaly detection, namely MMAE.MMAE updates slots at corresponding resolution scale as prototype features during unsupervised learning.
異常検出のために、各スケールで元の符号化画像の特徴を最も関連性の高いプロトタイプ機能に置き換えて異常除去を行い、復号モジュールに入力して画像再構成を行う。
各種データセットに対する実験結果から,MMAEは異なるスケールで異常を除去し,類似の再構成手法と比較して,複数のデータセットで良好に機能することを確認した。
関連論文リスト
- Self-Supervised Training with Autoencoders for Visual Anomaly Detection [93.68531382792366]
本稿では,深層畳み込み型オートエンコーダのための自己教師型学習システムを提案する。
モデルが修正された再構成エラーによってデータ多様体に集中するように調整しながら、トレーニング中に識別情報を使用することができる。
MVTec 異常検出データセットに対する実験により,提案手法の高精度な認識とローカライゼーション性能が示された。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Deep Federated Anomaly Detection for Multivariate Time Series Data [93.08977495974978]
本稿では,Fed-ExDNN(Federated Exemplar-based Deep Neural Network)を用いて,異なるエッジデバイス上での多変量時系列データの異常検出を行う。
ExDNNとFed-ExDNNは、最先端の異常検出アルゴリズムやフェデレーション学習技術より優れていることを示す。
論文 参考訳(メタデータ) (2022-05-09T05:06:58Z) - Unsupervised Anomaly Detection in Medical Images with a Memory-augmented
Multi-level Cross-attentional Masked Autoencoder [29.254120405971047]
教師なし異常検出(UAD)は、通常の画像のみを含むトレーニングセットを使用して検出器を最適化することにより、異常な画像を見つけることを目的としている。
UADアプローチは、再構成方法、自己教師付きアプローチ、およびImagenet事前訓練モデルに基づくことができる。
異常画像に対する低い再構成誤差問題に対処する新しい再構成に基づくUDA手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T13:32:42Z) - AnoViT: Unsupervised Anomaly Detection and Localization with Vision
Transformer-based Encoder-Decoder [3.31490164885582]
我々は,画像パッチ間のグローバルな関係を学習することにより,通常の情報を反映する視覚変換器を用いたエンコーダデコーダモデルAnoViTを提案する。
提案モデルは,3つのベンチマークデータセット上での畳み込みモデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-03-21T09:01:37Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
本稿では,ビデオ監視における異常検出問題に対処する。
異常事象の固有な規則性と不均一性のため、問題は正規性モデリング戦略と見なされる。
我々のモデルは、トレーニング中に異常なサンプルを見ることなく、オブジェクト中心の正規パターンを学習する。
論文 参考訳(メタデータ) (2022-03-07T19:28:39Z) - Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection [97.93062818228015]
本稿では,再建に基づく機能を,新たな自己監督型予測アーキテクチャビルディングブロックに統合することを提案する。
我々のブロックは、受容領域におけるマスク領域に対する再構成誤差を最小限に抑える損失を備える。
画像やビデオの異常検出のための最先端フレームワークに組み込むことで,ブロックの汎用性を実証する。
論文 参考訳(メタデータ) (2021-11-17T13:30:31Z) - Anomaly Detection with Prototype-Guided Discriminative Latent Embeddings [29.93983580779689]
本論文では,通常のデータの識別的プロトタイプを用いて映像フレームを再構築する異常検出手法を提案する。
このようにして、モデルは通常のイベントの再構築を支持し、異常なイベントの再構築を歪めます。
本手法の有効性を3つのベンチマークデータセットで評価し,提案手法が最先端を上回っていることを示す。
論文 参考訳(メタデータ) (2021-04-30T12:16:52Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - ODDObjects: A Framework for Multiclass Unsupervised Anomaly Detection on
Masked Objects [0.0]
ODDObjectsは、COCOスタイルのデータセットでトレーニングされた教師なしオートエンコーダを使用して、さまざまなカテゴリの異常を検出するように設計されている。
このフレームワークはオートエンコーダによる異常検出に関する以前の作業を拡張し、オブジェクト認識データセットでトレーニングされた最先端のモデルを比較する。
論文 参考訳(メタデータ) (2021-04-26T01:13:28Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
正規データと異常データの間のKL偏差を計測する新たな目的関数を提案する。
提案手法は,複数のベンチマークデータセットの最先端性能を著しく上回っている。
論文 参考訳(メタデータ) (2020-12-09T08:16:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。