Feature Purified Transformer With Cross-level Feature Guiding Decoder For Multi-class OOD and Anomaly Deteciton
- URL: http://arxiv.org/abs/2406.15396v1
- Date: Tue, 30 Apr 2024 16:45:51 GMT
- Title: Feature Purified Transformer With Cross-level Feature Guiding Decoder For Multi-class OOD and Anomaly Deteciton
- Authors: Jerry Chun-Wei Lin, Pi-Wei Chen, Chao-Chun Chen,
- Abstract summary: We introduce the FUTUREG framework, which incorporates two innovative modules: the Feature Purification Module (FPM) and the CFG Decoder.
The FPM constrains the normality boundary within the latent space to effectively filter out anomalous features.
The CFG Decoder uses layer-wise encoder representations to guide the reconstruction of filtered features, preserving fine-grained details.
- Score: 22.59400036717643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstruction networks are prevalently used in unsupervised anomaly and Out-of-Distribution (OOD) detection due to their independence from labeled anomaly data. However, in multi-class datasets, the effectiveness of anomaly detection is often compromised by the models' generalized reconstruction capabilities, which allow anomalies to blend within the expanded boundaries of normality resulting from the added categories, thereby reducing detection accuracy. We introduce the FUTUREG framework, which incorporates two innovative modules: the Feature Purification Module (FPM) and the CFG Decoder. The FPM constrains the normality boundary within the latent space to effectively filter out anomalous features, while the CFG Decoder uses layer-wise encoder representations to guide the reconstruction of filtered features, preserving fine-grained details. Together, these modules enhance the reconstruction error for anomalies, ensuring high-quality reconstructions for normal samples. Our results demonstrate that FUTUREG achieves state-of-the-art performance in multi-class OOD settings and remains competitive in industrial anomaly detection scenarios.
Related papers
- Revisiting Deep Feature Reconstruction for Logical and Structural Industrial Anomaly Detection [2.3020018305241337]
Industrial anomaly detection is crucial for quality control and predictive maintenance.
Existing methods commonly detect structural anomalies, such as dents and scratches, by leveraging multi-scale features from image patches extracted through deep pre-trained networks.
We address these limitations by focusing on Deep Feature Reconstruction (DFR), a memory- and compute-efficient approach for detecting structural anomalies.
We further enhance DFR into a unified framework, called ULSAD, which is capable of detecting both structural and logical anomalies.
arXiv Detail & Related papers (2024-10-21T17:56:47Z) - A Hierarchically Feature Reconstructed Autoencoder for Unsupervised Anomaly Detection [8.512184778338806]
It consists of a well pre-trained encoder to extract hierarchical feature representations and a decoder to reconstruct these intermediate features from the encoder.
The anomalies can be detected when the decoder fails to reconstruct features well, and then errors of hierarchical feature reconstruction are aggregated into an anomaly map to achieve anomaly localization.
Experiment results show that the proposed method outperforms the state-of-the-art methods on MNIST, Fashion-MNIST, CIFAR-10, and MVTec Anomaly Detection datasets.
arXiv Detail & Related papers (2024-05-15T07:20:27Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
We propose Diversity-Measurable Anomaly Detection (DMAD) framework to enhance reconstruction diversity.
PDM essentially decouples deformation from embedding and makes the final anomaly score more reliable.
arXiv Detail & Related papers (2023-03-09T05:52:42Z) - Two-stream Decoder Feature Normality Estimating Network for Industrial
Anomaly Detection [4.772323272202286]
We propose a two-stream decoder network (TSDN) to learn both normal and abnormal features.
We also propose a feature normality estimator (FNE) to eliminate abnormal features and prevent high-quality reconstruction of abnormal regions.
arXiv Detail & Related papers (2023-02-20T06:46:09Z) - Reference-Based Autoencoder for Surface Defect Detection [7.163582730053925]
We propose a novel unsupervised reference-based autoencoder (RB-AE) to accurately inspect a variety of textured defects.
artificial defects and a novel pixel-level discrimination loss function are utilized for training to enable the model to obtain pixel-level discrimination ability.
arXiv Detail & Related papers (2022-11-18T07:13:55Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - Improving unsupervised anomaly localization by applying multi-scale
memories to autoencoders [14.075973859711567]
MMAE.MMAE updates slots at corresponding resolution scale as prototype features during unsupervised learning.
For anomaly detection, we accomplish anomaly removal by replacing the original encoded image features at each scale with most relevant prototype features.
Experimental results on various datasets testify that our MMAE successfully removes anomalies at different scales and performs favorably on several datasets.
arXiv Detail & Related papers (2020-12-21T04:44:40Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.