論文の概要: Causal Discovery Inspired Unsupervised Domain Adaptation for Emotion-Cause Pair Extraction
- arxiv url: http://arxiv.org/abs/2406.15490v1
- Date: Tue, 18 Jun 2024 13:01:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 23:44:36.314990
- Title: Causal Discovery Inspired Unsupervised Domain Adaptation for Emotion-Cause Pair Extraction
- Title(参考訳): 心因性ペア抽出のための教師なしドメイン適応に基づく因果発見
- Authors: Yuncheng Hua, Yujin Huang, Shuo Huang, Tao Feng, Lizhen Qu, Chris Bain, Richard Bassed, Gholamreza Haffari,
- Abstract要約: 本稿では、教師なし領域適応設定における感情原因ペア抽出の課題に取り組む。
因果発見に触発されて、変分オートエンコーダフレームワークにおける新しい潜伏モデルを提案する。
- 参考スコア(独自算出の注目度): 42.26135798049004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper tackles the task of emotion-cause pair extraction in the unsupervised domain adaptation setting. The problem is challenging as the distributions of the events causing emotions in target domains are dramatically different than those in source domains, despite the distributions of emotional expressions between domains are overlapped. Inspired by causal discovery, we propose a novel deep latent model in the variational autoencoder (VAE) framework, which not only captures the underlying latent structures of data but also utilizes the easily transferable knowledge of emotions as the bridge to link the distributions of events in different domains. To facilitate knowledge transfer across domains, we also propose a novel variational posterior regularization technique to disentangle the latent representations of emotions from those of events in order to mitigate the damage caused by the spurious correlations related to the events in source domains. Through extensive experiments, we demonstrate that our model outperforms the strongest baseline by approximately 11.05% on a Chinese benchmark and 2.45% on a English benchmark in terms of weighted-average F1 score. The source code will be publicly available upon acceptance.
- Abstract(参考訳): 本稿では、教師なし領域適応設定における感情原因ペア抽出の課題に取り組む。
ドメイン間の感情表現の分布が重複しているにもかかわらず、ターゲットドメイン内の感情を引き起こす事象の分布はソースドメインと劇的に異なるため、この問題は困難である。
因果発見にインスパイアされた、変動オートエンコーダ(VAE)フレームワークにおける新しい潜時モデルを提案する。これは、基礎となる潜時構造をキャプチャするだけでなく、異なる領域における事象の分布をリンクするブリッジとして、容易に伝達可能な感情の知識を利用する。
また、ドメイン間の知識伝達を容易にするため、ソースドメイン内の出来事に関連付けられた素早い相関によるダメージを軽減するために、イベントの出来事から感情の潜伏表現を解き放つような、新しい変分後正規化手法を提案する。
広範にわたる実験により、我々のモデルは、中国語のベンチマークで約11.05%、英語のベンチマークで2.45%、重み付き平均F1スコアで最強のベースラインを上回ります。
ソースコードは受理時に公開される。
関連論文リスト
- Overcoming Negative Transfer by Online Selection: Distant Domain Adaptation for Fault Diagnosis [42.85741244467877]
遠距離領域適応問題」という用語は、ラベル付きソースドメインからラベル付き未ラベルのターゲットドメインへの適応の難しさを記述している。
この問題は、ソースドメインからの外部知識がターゲットドメインのパフォーマンスに悪影響を及ぼす、負の転送のリスクを示す。
この課題に対応するために、我々は、新しいオンライン選択適応(OSAA)アプローチを提案する。
論文 参考訳(メタデータ) (2024-05-25T07:17:47Z) - Cross-Domain Policy Adaptation by Capturing Representation Mismatch [53.087413751430255]
強化学習(RL)において、動的に異なる領域に移行できる効果的な政策を学ぶことが不可欠である。
本稿では、ソースドメインとターゲットドメインとの間に動的ミスマッチが存在する場合の動的適応設定について考察する。
対象領域でのみ表現学習を行い、ソース領域からの遷移における表現偏差を測定する。
論文 参考訳(メタデータ) (2024-05-24T09:06:12Z) - Domain Generalization via Causal Adjustment for Cross-Domain Sentiment
Analysis [59.73582306457387]
クロスドメイン感情分析における領域一般化の問題に焦点をあてる。
本稿では,ドメイン固有表現とドメイン不変表現をアンタングル化するバックドア調整に基づく因果モデルを提案する。
一連の実験は、我々のモデルの優れたパフォーマンスと堅牢性を示しています。
論文 参考訳(メタデータ) (2024-02-22T13:26:56Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
我々は、ソースデータとターゲットデータに基づいて、暗黙の基盤となる表面表現を同時に学習する教師なし補助タスクを導入する。
両方のドメインが同じ遅延表現を共有しているため、モデルは2つのデータソース間の不一致を許容せざるを得ない。
実験の結果,本手法は実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-
論文 参考訳(メタデータ) (2023-04-06T17:36:23Z) - Adversarial Bi-Regressor Network for Domain Adaptive Regression [52.5168835502987]
ドメインシフトを軽減するために、クロスドメインレグレッタを学ぶことが不可欠です。
本稿では、より効果的なドメイン間回帰モデルを求めるために、ABRNet(Adversarial Bi-Regressor Network)を提案する。
論文 参考訳(メタデータ) (2022-09-20T18:38:28Z) - Controlled Generation of Unseen Faults for Partial and OpenSet&Partial
Domain Adaptation [0.0]
新たな運用条件は、トレーニングとテストデータ分布のドメインギャップによって、障害診断モデルのパフォーマンスが低下する可能性がある。
本稿では、Wasserstein GANをベースとした、部分的およびOpenSet&Partialドメイン適応のための新しいフレームワークを提案する。
主なコントリビューションは、制御されたフォールトデータ生成であり、ターゲットドメインで観測されていないフォールトタイプと重大度レベルを生成することができる。
論文 参考訳(メタデータ) (2022-04-29T13:05:25Z) - Knowledge Distillation for BERT Unsupervised Domain Adaptation [2.969705152497174]
トレーニング済みの言語モデルであるBERTは、さまざまな自然言語処理タスクで大幅なパフォーマンス向上を実現している。
蒸留による逆順応法(AAD)を提案する。
ドメイン間感情分類におけるアプローチを30組のドメイン対で評価した。
論文 参考訳(メタデータ) (2020-10-22T06:51:24Z) - Sequential Domain Adaptation through Elastic Weight Consolidation for
Sentiment Analysis [3.1473798197405944]
我々はSDA(Sequential Domain Adaptation)というモデルに依存しないフレームワークを提案する。
提案手法は,CNNのようなシンプルなアーキテクチャが,感情分析(SA)の領域適応において,複雑な最先端モデルより優れていることを示す。
さらに、ソースドメインのより難しい第1次反計算機的順序付けの有効性が最大性能に繋がることを示した。
論文 参考訳(メタデータ) (2020-07-02T15:21:56Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
本稿では,ドメイン適応のための新しいセマンティクスを提案する。このセマンティクスでは,ソースドメインと比較して,対象ドメインのアノテーション付きデータがはるかに少ない。
我々のセマンティックな利点は、2段階の粗大なフレームワークから得ており、2段階の異なる正確な処理を提供できる。
ベンチマークデータセットの実験により、我々の手法はいくつかの一般的なドメイン適応戦略より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-06-23T14:47:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。