論文の概要: Sequential Domain Adaptation through Elastic Weight Consolidation for
Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2007.01189v3
- Date: Sun, 19 Jul 2020 08:50:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 14:20:25.021689
- Title: Sequential Domain Adaptation through Elastic Weight Consolidation for
Sentiment Analysis
- Title(参考訳): 感性解析のための弾性重み強化による逐次領域適応
- Authors: Avinash Madasu and Vijjini Anvesh Rao
- Abstract要約: 我々はSDA(Sequential Domain Adaptation)というモデルに依存しないフレームワークを提案する。
提案手法は,CNNのようなシンプルなアーキテクチャが,感情分析(SA)の領域適応において,複雑な最先端モデルより優れていることを示す。
さらに、ソースドメインのより難しい第1次反計算機的順序付けの有効性が最大性能に繋がることを示した。
- 参考スコア(独自算出の注目度): 3.1473798197405944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Elastic Weight Consolidation (EWC) is a technique used in overcoming
catastrophic forgetting between successive tasks trained on a neural network.
We use this phenomenon of information sharing between tasks for domain
adaptation. Training data for tasks such as sentiment analysis (SA) may not be
fairly represented across multiple domains. Domain Adaptation (DA) aims to
build algorithms that leverage information from source domains to facilitate
performance on an unseen target domain. We propose a model-independent
framework - Sequential Domain Adaptation (SDA). SDA draws on EWC for training
on successive source domains to move towards a general domain solution, thereby
solving the problem of domain adaptation. We test SDA on convolutional,
recurrent, and attention-based architectures. Our experiments show that the
proposed framework enables simple architectures such as CNNs to outperform
complex state-of-the-art models in domain adaptation of SA. In addition, we
observe that the effectiveness of a harder first Anti-Curriculum ordering of
source domains leads to maximum performance.
- Abstract(参考訳): elastic weight consolidation (ewc) は、ニューラルネットワークでトレーニングされた一連のタスク間の破滅的な忘れを克服するために使用されるテクニックである。
タスク間の情報共有という現象をドメイン適応に利用します。
感情分析(SA)のようなタスクのトレーニングデータは、複数のドメインにまたがって適切に表現されない場合がある。
ドメイン適応(da)は、ソースドメインの情報を活用するアルゴリズムの構築を目標とする。
モデルに依存しないフレームワークであるSequential Domain Adaptation (SDA)を提案する。
SDAは、連続するソースドメインのトレーニングをEWCに委ねて、一般的なドメインソリューションへと移行し、ドメイン適応の問題を解決する。
我々は、畳み込み、繰り返し、注意に基づくアーキテクチャでSDAをテストする。
実験により,提案フレームワークは,SAのドメイン適応において,CNNなどの単純なアーキテクチャが複雑な最先端モデルより優れていることを示す。
さらに、ソースドメインのより難しい第1の反コイル順序付けの有効性が、最大性能をもたらすことを観察する。
関連論文リスト
- Domain Adaptation from Scratch [24.612696638386623]
我々は、NLPを機密ドメインに拡張するために欠かせない、新しい学習セットである「スクラッチからのドメイン適応」を提示する。
この設定では、トレーニングされたモデルがセンシティブなターゲットドメイン上でうまく動作するように、ソースドメインの集合からのデータを効率的にアノテートすることを目的としている。
本研究は、データ選択やドメイン適応アルゴリズムからアクティブな学習パラダイムまで、この挑戦的な設定に対するいくつかのアプローチを比較した。
論文 参考訳(メタデータ) (2022-09-02T05:55:09Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
ドメイン適応は現代の機械学習において一般的なパラダイムである。
ドメイン適応主成分分析(DAPCA)という手法を提案する。
DAPCAは、領域適応タスクの解決に有用な線形化データ表現を見つける。
論文 参考訳(メタデータ) (2022-08-28T21:10:56Z) - Feed-Forward Latent Domain Adaptation [17.71179872529747]
本研究では,資源制約されたエッジデバイスが事前学習したモデルをローカルなデータ分布に適応させることのできる,新しい高度に実践的な問題設定について検討する。
エッジデバイスの制限を考慮すると、バックプロパゲーションを使わず、ソースデータにアクセスせずに、事前訓練されたモデルのみを使用し、フィードフォワード方式で適応することを目指している。
我々の解決策は、混合関連ターゲットデータセットを埋め込み、クロスアテンションを用いてターゲットサンプルに対する推論を動的に適応できるネットワークをメタラーニングすることである。
論文 参考訳(メタデータ) (2022-07-15T17:37:42Z) - Domain-Agnostic Prior for Transfer Semantic Segmentation [197.9378107222422]
教師なしドメイン適応(UDA)はコンピュータビジョンコミュニティにおいて重要なトピックである。
ドメインに依存しない事前学習(DAP)を用いてドメイン間表現学習を規則化する機構を提案する。
我々の研究は、UDAがより良いプロキシ、おそらく他のデータモダリティの恩恵を受けていることを明らかにしている。
論文 参考訳(メタデータ) (2022-04-06T09:13:25Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - Curriculum CycleGAN for Textual Sentiment Domain Adaptation with
Multiple Sources [68.31273535702256]
我々は,C-CycleGAN(C-CycleGAN)という,新しいインスタンスレベルのMDAフレームワークを提案する。
C-CycleGANは、(1)異なるドメインからのテキスト入力を連続的な表現空間にエンコードする事前訓練されたテキストエンコーダ、(2)ソースとターゲットドメイン間のギャップを埋めるカリキュラムインスタンスレベルの適応を伴う中間ドメインジェネレータ、(3)中間ドメインで最終感情分類のために訓練されたタスク分類器の3つのコンポーネントから構成される。
3つのベンチマークデータセットに対して広範な実験を行い、最先端のDAアプローチよりも大幅に向上した。
論文 参考訳(メタデータ) (2020-11-17T14:50:55Z) - Domain Conditioned Adaptation Network [90.63261870610211]
本稿では,ドメイン条件付きチャネルアテンション機構を用いて,異なる畳み込みチャネルを励起するドメイン条件適応ネットワーク(DCAN)を提案する。
これは、ディープDAネットワークのドメインワイドな畳み込みチャネルアクティベーションを探求する最初の試みである。
論文 参考訳(メタデータ) (2020-05-14T04:23:24Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
領域適応法は、2つの領域間の分布がシフトし、それを認識しようとすると仮定する。
グラフ埋め込みに基づく汎用フレームワークを提案する。
提案手法が強力なドメイン適応フレームワークにつながることを示す。
論文 参考訳(メタデータ) (2020-03-09T12:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。