論文の概要: Contrastive Entity Coreference and Disambiguation for Historical Texts
- arxiv url: http://arxiv.org/abs/2406.15576v1
- Date: Fri, 21 Jun 2024 18:22:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 21:34:03.391091
- Title: Contrastive Entity Coreference and Disambiguation for Historical Texts
- Title(参考訳): コントラスト的エンティティの一貫性と歴史的テキストの曖昧さ
- Authors: Abhishek Arora, Emily Silcock, Leander Heldring, Melissa Dell,
- Abstract要約: 既存のエンティティの曖昧さの方法はしばしば、現代の知識ベースに記憶されていない個人を悩ませる歴史文書の正確さに欠ける。
本研究は,文献の文書間照合の解決と曖昧さの解消に3つの重要な貢献をしている。
- 参考スコア(独自算出の注目度): 2.446672595462589
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Massive-scale historical document collections are crucial for social science research. Despite increasing digitization, these documents typically lack unique cross-document identifiers for individuals mentioned within the texts, as well as individual identifiers from external knowledgebases like Wikipedia/Wikidata. Existing entity disambiguation methods often fall short in accuracy for historical documents, which are replete with individuals not remembered in contemporary knowledgebases. This study makes three key contributions to improve cross-document coreference resolution and disambiguation in historical texts: a massive-scale training dataset replete with hard negatives - that sources over 190 million entity pairs from Wikipedia contexts and disambiguation pages - high-quality evaluation data from hand-labeled historical newswire articles, and trained models evaluated on this historical benchmark. We contrastively train bi-encoder models for coreferencing and disambiguating individuals in historical texts, achieving accurate, scalable performance that identifies out-of-knowledgebase individuals. Our approach significantly surpasses other entity disambiguation models on our historical newswire benchmark. Our models also demonstrate competitive performance on modern entity disambiguation benchmarks, particularly certain news disambiguation datasets.
- Abstract(参考訳): 大規模な史料収集は社会科学研究に不可欠である。
デジタル化の増大にもかかわらず、これらの文書は典型的にはウィキペディアやウィキデータのような外部の知識ベースからの個人識別子だけでなく、テキスト内で言及された個人に対して独自の文書の識別子を欠いている。
既存のエンティティの曖昧さの方法はしばしば、現代の知識ベースに記憶されていない個人に欠かせない歴史文書の正確さに欠ける。
大規模なトレーニングデータセットは、ウィキペディアのコンテキストと曖昧なページから1億9000万以上のエンティティペア、手書きの歴史的ニュースワイヤー記事からの高品質な評価データ、この履歴ベンチマークで評価されたトレーニングモデルである。
両エンコーダモデルを用いて、歴史的テキスト中の個人をコア参照し、曖昧にするための訓練を行い、知識のない個人を識別する正確でスケーラブルなパフォーマンスを実現した。
我々のアプローチは、過去のニュースワイヤベンチマークにおける他のエンティティの曖昧さモデルを大きく上回っている。
我々のモデルは、現代のエンティティの曖昧さのベンチマーク、特に特定のニュースの曖昧さのデータセット上での競合性能も示しています。
関連論文リスト
- Transfer Learning across Several Centuries: Machine and Historian
Integrated Method to Decipher Royal Secretary's Diary [1.105375732595832]
歴史的テキストにおけるNERは、注釈付きコーパスの不足、多言語多様さ、様々なノイズ、現代の言語モデルとは全く異なる慣習といった課題に直面している。
本稿では,何世紀にもわたって記録された韓国の歴史的コーパス(SeungJeongWonと名づけられた王立書記官日記)を紹介する。
論文 参考訳(メタデータ) (2023-06-26T11:00:35Z) - PART: Pre-trained Authorship Representation Transformer [64.78260098263489]
文書を書く著者は、語彙、レジストリ、句読点、ミススペル、絵文字の使用など、テキスト内での識別情報をインプリントする。
以前の作品では、手作りのフィーチャや分類タスクを使用して著者モデルをトレーニングし、ドメイン外の著者に対するパフォーマンスの低下につながった。
セマンティクスの代わりにtextbfauthorship の埋め込みを学習するために、対照的に訓練されたモデルを提案する。
論文 参考訳(メタデータ) (2022-09-30T11:08:39Z) - Placing (Historical) Facts on a Timeline: A Classification cum Coref
Resolution Approach [4.809236881780707]
タイムラインは、ある期間に起こった重要な歴史的事実を視覚化する最も効果的な方法の1つである。
複数の(歴史的)テキスト文書からイベントタイムラインを生成するための2段階システムを提案する。
我々の結果は、歴史学者、歴史研究の進展、そして国の社会・政治の風景を理解する上で非常に役立ちます。
論文 参考訳(メタデータ) (2022-06-28T15:36:44Z) - Robust Text Line Detection in Historical Documents: Learning and
Evaluation Methods [1.9938405188113029]
本稿では,3つの最先端システムDoc-UFCN,dhSegment,ARU-Netを用いて実験を行った。
多様な未確認ページを正確にセグメント化できる,さまざまな履歴文書データセットに基づいてトレーニングされた汎用モデルを構築することが可能であることを示す。
論文 参考訳(メタデータ) (2022-03-23T11:56:25Z) - Algorithmic Fairness Datasets: the Story so Far [68.45921483094705]
データ駆動アルゴリズムは、人々の幸福に直接影響し、批判的な決定をサポートするために、さまざまな領域で研究されている。
研究者のコミュニティは、既存のアルゴリズムの株式を調査し、新しいアルゴリズムを提案し、歴史的に不利な人口に対する自動意思決定のリスクと機会の理解を深めてきた。
公正な機械学習の進歩はデータに基づいており、適切に文書化された場合にのみ適切に使用できる。
残念なことに、アルゴリズムフェアネスコミュニティは、特定のリソース(オパシティ)に関する情報の不足と利用可能な情報の分散(スパーシティ)によって引き起こされる、集合的なデータドキュメント負債に悩まされている。
論文 参考訳(メタデータ) (2022-02-03T17:25:46Z) - Digital Editions as Distant Supervision for Layout Analysis of Printed
Books [76.29918490722902]
本稿では,この意味的マークアップを,レイアウト解析モデルのトレーニングと評価のための遠隔監視として利用する手法について述べる。
DTA(Deutsches Textarchiv)の50万ページにわたるモデルアーキテクチャの実験では、これらの領域レベルの評価手法と画素レベルのメトリクスとワードレベルのメトリクスとの高い相関性を見出した。
自己学習による精度向上の可能性と、DTAで訓練されたモデルが他の歴史書に一般化できる可能性について論じる。
論文 参考訳(メタデータ) (2021-12-23T16:51:53Z) - Assessing the quality of sources in Wikidata across languages: a hybrid
approach [64.05097584373979]
いくつかの言語でラベルを持つWikidataのトリプルからサンプルした参照コーパスの大規模なコーパスを評価するために,一連のマイクロタスク実験を実施している。
クラウドソースアセスメントの統合されたバージョンを使用して、いくつかの機械学習モデルをトレーニングして、Wikidata全体の分析をスケールアップしています。
この結果はWikidataにおける参照の質の確認に役立ち、ユーザ生成多言語構造化データの品質をWeb上で定義し、取得する際の共通の課題を特定するのに役立ちます。
論文 参考訳(メタデータ) (2021-09-20T10:06:46Z) - Author Clustering and Topic Estimation for Short Texts [69.54017251622211]
同じ文書中の単語間の強い依存をモデル化することにより、遅延ディリクレ割当を拡張できる新しいモデルを提案する。
同時にユーザをクラスタ化し、ホック後のクラスタ推定の必要性を排除しています。
我々の手法は、短文で生じる問題に対する従来のアプローチよりも、-または----------- で機能する。
論文 参考訳(メタデータ) (2021-06-15T20:55:55Z) - Summarising Historical Text in Modern Languages [13.886432536330805]
本稿では,言語の歴史形式の文書を対応する現代語で要約する,歴史的テキスト要約の課題を紹介する。
これは、歴史家やデジタル人文科学研究者にとって基本的に重要なルーチンであるが、自動化されていない。
我々は、数百年前のドイツや中国の歴史的ニュースを現代ドイツ語や中国語で要約した高品質なゴールドスタンダードテキスト要約データセットをコンパイルする。
論文 参考訳(メタデータ) (2021-01-26T13:00:07Z) - Learning to Select Bi-Aspect Information for Document-Scale Text Content
Manipulation [50.01708049531156]
我々は、テキストスタイルの転送とは逆の文書スケールのテキストコンテンツ操作という、新しい実践的なタスクに焦点を当てる。
詳細は、入力は構造化されたレコードと、別のレコードセットを記述するための参照テキストのセットである。
出力は、ソースレコードセットの部分的内容と参照の書き込みスタイルを正確に記述した要約である。
論文 参考訳(メタデータ) (2020-02-24T12:52:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。