Physics Informed Machine Learning (PIML) methods for estimating the remaining useful lifetime (RUL) of aircraft engines
- URL: http://arxiv.org/abs/2406.15619v1
- Date: Fri, 21 Jun 2024 19:55:34 GMT
- Title: Physics Informed Machine Learning (PIML) methods for estimating the remaining useful lifetime (RUL) of aircraft engines
- Authors: Sriram Nagaraj, Truman Hickok,
- Abstract summary: This paper is aimed at using the newly developing field of physics informed machine learning (PIML) to develop models for predicting the remaining useful lifetime (RUL) aircraft engines.
We consider the well-known benchmark NASA Commercial Modular Aero-Propulsion System Simulation System (C-MAPSS) data as the main data for this paper.
C-MAPSS is a well-studied dataset with much existing work in the literature that address RUL prediction with classical and deep learning methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper is aimed at using the newly developing field of physics informed machine learning (PIML) to develop models for predicting the remaining useful lifetime (RUL) aircraft engines. We consider the well-known benchmark NASA Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) data as the main data for this paper, which consists of sensor outputs in a variety of different operating modes. C-MAPSS is a well-studied dataset with much existing work in the literature that address RUL prediction with classical and deep learning methods. In the absence of published empirical physical laws governing the C-MAPSS data, our approach first uses stochastic methods to estimate the governing physics models from the noisy time series data. In our approach, we model the various sensor readings as being governed by stochastic differential equations, and we estimate the corresponding transition density mean and variance functions of the underlying processes. We then augment LSTM (long-short term memory) models with the learned mean and variance functions during training and inferencing. Our PIML based approach is different from previous methods, and we use the data to first learn the physics. Our results indicate that PIML discovery and solutions methods are well suited for this problem and outperform previous data-only deep learning methods for this data set and task. Moreover, the framework developed herein is flexible, and can be adapted to other situations (other sensor modalities or combined multi-physics environments), including cases where the underlying physics is only partially observed or known.
Related papers
- MaD-Scientist: AI-based Scientist solving Convection-Diffusion-Reaction Equations Using Massive PINN-Based Prior Data [22.262191225577244]
We explore whether a similar approach can be applied to scientific foundation models (SFMs)
We collect low-cost physics-informed neural network (PINN)-based approximated prior data in the form of solutions to partial differential equations (PDEs) constructed through an arbitrary linear combination of mathematical dictionaries.
We provide experimental evidence on the one-dimensional convection-diffusion-reaction equation, which demonstrate that pre-training remains robust even with approximated prior data.
arXiv Detail & Related papers (2024-10-09T00:52:00Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Physics Sensor Based Deep Learning Fall Detection System [0.9128828609564524]
We build a complete system named TSFallDetect including data receiving device based on embedded sensor.
We exploit the sequential deep-learning methods to address this falling motion prediction problem based on data collected by inertial and film pressure sensors.
arXiv Detail & Related papers (2024-02-29T07:50:06Z) - Meta-Learning for Airflow Simulations with Graph Neural Networks [3.52359746858894]
We present a meta-learning approach to enhance the performance of learned models on out-of-distribution (OoD) samples.
Specifically, we set the airflow simulation in CFD over various airfoils as a meta-learning problem, where each set of examples defined on a single airfoil shape is treated as a separate task.
We experimentally demonstrate the efficiency of the proposed approach for improving the OoD generalization performance of learned models.
arXiv Detail & Related papers (2023-06-18T19:25:13Z) - Learning new physics efficiently with nonparametric methods [11.970219534238444]
We present a machine learning approach for model-independent new physics searches.
The corresponding algorithm is powered by recent large-scale implementations of kernel methods.
We show that our approach has dramatic advantages compared to neural network implementations in terms of training times and computational resources.
arXiv Detail & Related papers (2022-04-05T16:17:59Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols.
We propose four representative physical systems, as well as a collection of both widely used classical time-based and representative data-driven methods.
arXiv Detail & Related papers (2021-08-09T17:39:09Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: A New Insight into Machine Learning Applications [14.164058812512371]
This study presents a new modeling framework, named physics regularized machine learning (PRML), to encode classical traffic flow models into the machine learning architecture.
To prove the effectiveness of the proposed model, this paper conducts empirical studies on a real-world dataset which is collected from a stretch of I-15 freeway, Utah.
arXiv Detail & Related papers (2020-02-06T17:22:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.