Physics Sensor Based Deep Learning Fall Detection System
- URL: http://arxiv.org/abs/2403.06994v1
- Date: Thu, 29 Feb 2024 07:50:06 GMT
- Title: Physics Sensor Based Deep Learning Fall Detection System
- Authors: Zeyuan Qu, Tiange Huang, Yuxin Ji, Yongjun Li,
- Abstract summary: We build a complete system named TSFallDetect including data receiving device based on embedded sensor.
We exploit the sequential deep-learning methods to address this falling motion prediction problem based on data collected by inertial and film pressure sensors.
- Score: 0.9128828609564524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fall detection based on embedded sensor is a practical and popular research direction in recent years. In terms of a specific application: fall detection methods based upon physics sensors such as [gyroscope and accelerator] have been exploited using traditional hand crafted features and feed them in machine learning models like Markov chain or just threshold based classification methods. In this paper, we build a complete system named TSFallDetect including data receiving device based on embedded sensor, mobile deep-learning model deploying platform, and a simple server, which will be used to gather models and data for future expansion. On the other hand, we exploit the sequential deep-learning methods to address this falling motion prediction problem based on data collected by inertial and film pressure sensors. We make a empirical study based on existing datasets and our datasets collected from our system separately, which shows that the deep-learning model has more potential advantage than other traditional methods, and we proposed a new deep-learning model based on the time series data to predict the fall, and it may be superior to other sequential models in this particular field.
Related papers
- Physics Informed Machine Learning (PIML) methods for estimating the remaining useful lifetime (RUL) of aircraft engines [0.0]
This paper is aimed at using the newly developing field of physics informed machine learning (PIML) to develop models for predicting the remaining useful lifetime (RUL) aircraft engines.
We consider the well-known benchmark NASA Commercial Modular Aero-Propulsion System Simulation System (C-MAPSS) data as the main data for this paper.
C-MAPSS is a well-studied dataset with much existing work in the literature that address RUL prediction with classical and deep learning methods.
arXiv Detail & Related papers (2024-06-21T19:55:34Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - IoTGeM: Generalizable Models for Behaviour-Based IoT Attack Detection [3.3772986620114387]
We present an approach for modelling IoT network attacks that focuses on generalizability, yet also leads to better detection and performance.
First, we present an improved rolling window approach for feature extraction, and introduce a multi-step feature selection process that reduces overfitting.
Second, we build and test models using isolated train and test datasets, thereby avoiding common data leaks.
Third, we rigorously evaluate our methodology using a diverse portfolio of machine learning models, evaluation metrics and datasets.
arXiv Detail & Related papers (2023-10-17T21:46:43Z) - DynaBench: A benchmark dataset for learning dynamical systems from
low-resolution data [3.8695554579762814]
We introduce a novel simulated benchmark dataset, DynaBench, for learning dynamical systems directly from sparse data.
The dataset focuses on predicting the evolution of a dynamical system from low-resolution, unstructured measurements.
arXiv Detail & Related papers (2023-06-09T10:42:32Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Knowledge-Based Learning of Nonlinear Dynamics and Chaos [3.673994921516517]
We present a universal learning framework for extracting predictive models from nonlinear systems based on observations.
Our framework can readily incorporate first principle knowledge because it naturally models nonlinear systems as continuous-time systems.
arXiv Detail & Related papers (2020-10-07T13:50:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.