論文の概要: Root Cause Analysis of Anomalies in 5G RAN Using Graph Neural Network and Transformer
- arxiv url: http://arxiv.org/abs/2406.15638v1
- Date: Fri, 21 Jun 2024 20:34:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 21:14:22.404872
- Title: Root Cause Analysis of Anomalies in 5G RAN Using Graph Neural Network and Transformer
- Title(参考訳): グラフニューラルネットワークと変圧器を用いた5G RAN異常解析
- Authors: Antor Hasan, Conrado Boeira, Khaleda Papry, Yue Ju, Zhongwen Zhu, Israat Haque,
- Abstract要約: 5G無線アクセスネットワーク(RAN)における異常検出と根本原因解析のための最先端手法を提案する。
グラフネットワークを利用して空間的関係をキャプチャし、Transformerモデルを使用してデータの時間的依存関係を学習する。
結果は、Simbaの優位性を確認するために、既存のソリューションと比較される。
- 参考スコア(独自算出の注目度): 0.9895793818721335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of 5G technology marks a significant milestone in developing telecommunication networks, enabling exciting new applications such as augmented reality and self-driving vehicles. However, these improvements bring an increased management complexity and a special concern in dealing with failures, as the applications 5G intends to support heavily rely on high network performance and low latency. Thus, automatic self-healing solutions have become effective in dealing with this requirement, allowing a learning-based system to automatically detect anomalies and perform Root Cause Analysis (RCA). However, there are inherent challenges to the implementation of such intelligent systems. First, there is a lack of suitable data for anomaly detection and RCA, as labelled data for failure scenarios is uncommon. Secondly, current intelligent solutions are tailored to LTE networks and do not fully capture the spatio-temporal characteristics present in the data. Considering this, we utilize a calibrated simulator, Simu5G, and generate open-source data for normal and failure scenarios. Using this data, we propose Simba, a state-of-the-art approach for anomaly detection and root cause analysis in 5G Radio Access Networks (RANs). We leverage Graph Neural Networks to capture spatial relationships while a Transformer model is used to learn the temporal dependencies of the data. We implement a prototype of Simba and evaluate it over multiple failures. The outcomes are compared against existing solutions to confirm the superiority of Simba.
- Abstract(参考訳): 5Gテクノロジーの出現は、通信ネットワークの開発において重要なマイルストーンであり、拡張現実や自動運転車といったエキサイティングな新しい応用を可能にしている。
しかし、これらの改善により、管理の複雑さが増大し、アプリケーションの5Gは高いネットワーク性能と低レイテンシに大きく依存する。
これにより、学習ベースシステムが異常を自動的に検出し、ルート原因解析(RCA)を実行することができる。
しかし、このようなインテリジェントシステムの実装には固有の課題がある。
まず、障害シナリオのラベル付きデータは珍しく、異常検出やRCAに適したデータが不足している。
第二に、現在のインテリジェントソリューションはLTEネットワークに合わせて調整されており、データに存在する時空間特性を完全に把握していない。
これを考慮し、キャリブレーションされたシミュレータSimu5Gを使用し、正常および故障シナリオのためのオープンソースデータを生成する。
このデータを用いて, 5G Radio Access Networks (RANs) における異常検出と根本原因解析のための最先端手法である Simba を提案する。
グラフニューラルネットワークを用いて空間的関係をキャプチャし、Transformerモデルを用いてデータの時間的依存関係を学習する。
Simbaのプロトタイプを実装し、複数の障害に対して評価する。
結果は、Simbaの優位性を確認するために、既存のソリューションと比較される。
関連論文リスト
- Enhanced Real-Time Threat Detection in 5G Networks: A Self-Attention RNN Autoencoder Approach for Spectral Intrusion Analysis [8.805162150763847]
本稿では,自己認識機構とリカレントニューラルネットワーク(RNN)に基づくオートエンコーダを統合する実験モデルを提案する。
本手法は, 時系列解析, プロセス・イン・フェイズ, および二次(I/Q)サンプルを用いて, ジャミング攻撃の可能性を示す不規則性を同定する。
モデルアーキテクチャは自己アテンション層で拡張され、RNNオートエンコーダの機能を拡張する。
論文 参考訳(メタデータ) (2024-11-05T07:01:15Z) - DISTINQT: A Distributed Privacy Aware Learning Framework for QoS Prediction for Future Mobile and Wireless Networks [2.114401279266792]
5Gと6G以上のネットワークは、あるレベルのQuality of Service(QoS)に依存してスムーズな運用を行う、新しくて挑戦的なユースケースとアプリケーションをサポートすることが期待されている。
タイムリーな方法での予測は、特に車両通信の場合のように、安全クリティカルな応用において非常に重要である。
DisTINQTは、予測のための新しいマルチヘッド入力対応分散学習フレームワークである。
論文 参考訳(メタデータ) (2024-01-15T13:00:48Z) - Detecting Anomalies using Generative Adversarial Networks on Images [0.0]
本稿では,新しいGANに基づく異常検出モデルを提案する。
通常の(非非正則な)画像を使用して、入力画像が異常/脅威オブジェクトを含むかどうかを検知する正常性について学習する。
CIFAR-10、MVTec AD(産業応用用)、SIXray(X線バッグセキュリティ用)の3つのデータセットで実験が行われた。
論文 参考訳(メタデータ) (2022-11-24T21:52:25Z) - Self-Supervised and Interpretable Anomaly Detection using Network
Transformers [1.0705399532413615]
本稿では,異常検出のためのNetwork Transformer(NeT)モデルを提案する。
NeTは、解釈性を改善するために、通信ネットワークのグラフ構造を組み込んでいる。
提案手法は, 産業制御システムにおける異常検出の精度を評価することによって検証された。
論文 参考訳(メタデータ) (2022-02-25T22:05:59Z) - NetRCA: An Effective Network Fault Cause Localization Algorithm [22.88986905436378]
ネットワーク障害の根本原因の特定は、ネットワークの運用と保守に不可欠である。
この問題に対処するために,NetRCAという新しいアルゴリズムを提案する。
ICASSP 2022 AIOps Challengeの実際のデータセットで実験と分析が行われる。
論文 参考訳(メタデータ) (2022-02-23T02:03:35Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。