VigilEye -- Artificial Intelligence-based Real-time Driver Drowsiness Detection
- URL: http://arxiv.org/abs/2406.15646v1
- Date: Fri, 21 Jun 2024 20:53:49 GMT
- Title: VigilEye -- Artificial Intelligence-based Real-time Driver Drowsiness Detection
- Authors: Sandeep Singh Sengar, Aswin Kumar, Owen Singh,
- Abstract summary: This study presents a novel driver drowsiness detection system that combines deep learning techniques with the OpenCV framework.
The system uses facial landmarks extracted from the driver's face as input to Convolutional Neural Networks trained to recognise drowsiness patterns.
The proposed system has the potential to enhance road safety by providing timely alerts to prevent accidents caused by driver fatigue.
- Score: 0.5549794481031468
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study presents a novel driver drowsiness detection system that combines deep learning techniques with the OpenCV framework. The system utilises facial landmarks extracted from the driver's face as input to Convolutional Neural Networks trained to recognise drowsiness patterns. The integration of OpenCV enables real-time video processing, making the system suitable for practical implementation. Extensive experiments on a diverse dataset demonstrate high accuracy, sensitivity, and specificity in detecting drowsiness. The proposed system has the potential to enhance road safety by providing timely alerts to prevent accidents caused by driver fatigue. This research contributes to advancing real-time driver monitoring systems and has implications for automotive safety and intelligent transportation systems. The successful application of deep learning techniques in this context opens up new avenues for future research in driver monitoring and vehicle safety. The implementation code for the paper is available at https://github.com/LUFFY7001/Driver-s-Drowsiness-Detection.
Related papers
- Federated Learning for Drowsiness Detection in Connected Vehicles [0.19116784879310028]
Driver monitoring systems can assist in determining the driver's state.
Driver drowsiness detection presents a potential solution.
transmitting the data to a central machine for model training is impractical due to the large data size and privacy concerns.
We propose a federated learning framework for drowsiness detection within a vehicular network, leveraging the YawDD dataset.
arXiv Detail & Related papers (2024-05-06T09:39:13Z) - Improving automatic detection of driver fatigue and distraction using
machine learning [0.0]
Driver fatigue and distracted driving are important factors in traffic accidents.
We present techniques for simultaneously detecting fatigue and distracted driving behaviors using vision-based and machine learning-based approaches.
arXiv Detail & Related papers (2024-01-04T06:33:46Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
arXiv Detail & Related papers (2023-06-09T14:33:26Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
Nonobjective driving experience is difficult to model.
In this paper, we propose a FeedBack Loop Network (FBLNet) which attempts to model the driving experience accumulation procedure.
Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - Vision Transformers and YoloV5 based Driver Drowsiness Detection
Framework [0.0]
This paper introduces a novel framework based on vision transformers and YoloV5 architectures for driver drowsiness recognition.
A custom YoloV5 pre-trained architecture is proposed for face extraction with the aim of extracting Region of Interest (ROI)
For the further evaluation, proposed framework is tested on a custom dataset of 39 participants in various light circumstances and achieved 95.5% accuracy.
arXiv Detail & Related papers (2022-09-03T11:37:41Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Driver Drowsiness Classification Based on Eye Blink and Head Movement
Features Using the k-NN Algorithm [8.356765961526955]
This work is to extend the driver drowsiness detection in vehicles using signals of a driver monitoring camera.
For this purpose, 35 features related to the driver's eye blinking behavior and head movements are extracted in driving simulator experiments.
A concluding analysis of the best performing feature sets yields valuable insights about the influence of drowsiness on the driver's blink behavior and head movements.
arXiv Detail & Related papers (2020-09-28T12:37:38Z) - Driver Safety Development Real Time Driver Drowsiness Detection System
Based on Convolutional Neural Network [1.7188280334580195]
This paper focuses on the challenge of driver safety on the road and presents a novel system for drowsiness detection.
To detect the falling sleep state of the driver as the sign of drowsiness, Convolutional Neural Networks (CNN) are used.
arXiv Detail & Related papers (2020-01-15T05:38:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.