論文の概要: Combining Neural Networks and Symbolic Regression for Analytical Lyapunov Function Discovery
- arxiv url: http://arxiv.org/abs/2406.15675v1
- Date: Fri, 21 Jun 2024 22:31:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 21:04:37.172558
- Title: Combining Neural Networks and Symbolic Regression for Analytical Lyapunov Function Discovery
- Title(参考訳): 解析的リアプノフ関数発見のためのニューラルネットワークとシンボリック回帰の組み合わせ
- Authors: Jie Feng, Haohan Zou, Yuanyuan Shi,
- Abstract要約: CoNSAL (Analytical Lyapunov関数の結合ニューラルネットワークと回帰)
このフレームワークは、ニューラルネットワークを精密な分析形式に蒸留するためにシンボリックレグレッションを適用する、ニューラルリアプノフ関数とシンボリックレグレッション成分を含む。
従来の結果と比較して,本アルゴリズムは解釈性の向上を伴うリアプノフ関数の解析形式を直接生成する。
- 参考スコア(独自算出の注目度): 3.803654983282309
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose CoNSAL (Combining Neural networks and Symbolic regression for Analytical Lyapunov function) to construct analytical Lyapunov functions for nonlinear dynamic systems. This framework contains a neural Lyapunov function and a symbolic regression component, where symbolic regression is applied to distill the neural network to precise analytical forms. Our approach utilizes symbolic regression not only as a tool for translation but also as a means to uncover counterexamples. This procedure terminates when no counterexamples are found in the analytical formulation. Compared with previous results, our algorithm directly produces an analytical form of the Lyapunov function with improved interpretability in both the learning process and the final results. We apply our algorithm to 2-D inverted pendulum, path following, Van Der Pol Oscillator, 3-D trig dynamics, 4-D rotating wheel pendulum, 6-D 3-bus power system, and demonstrate that our algorithm successfully finds their valid Lyapunov functions.
- Abstract(参考訳): 非線形力学系に対する解析的リアプノフ関数を構成するために,CoNSAL (Combining Neural Network and Symbolic regression for Analytical Lyapunov function)を提案する。
このフレームワークは、ニューラルネットワークを精密な分析形式に蒸留するためにシンボリックレグレッションを適用する、ニューラルリアプノフ関数とシンボリックレグレッション成分を含む。
本手法は, 記号回帰を翻訳の道具としてだけでなく, 反例を明らかにする手段としても活用する。
この手順は、解析的定式化において反例が見つからない場合に終了する。
従来の結果と比較すると,本アルゴリズムは学習過程と最終結果の両方において,解釈性が改善されたリアプノフ関数の解析形式を直接生成する。
本稿では,2次元逆振子,経路追従,Van Der Pol Oscillator,3次元トリグダイナミクス,4次元回転輪振子,6次元3バスパワーシステムに適用し,本アルゴリズムが有効なリアプノフ関数の発見に成功したことを示す。
関連論文リスト
- The Prevalence of Neural Collapse in Neural Multivariate Regression [3.691119072844077]
ニューラルネットワークは、分類問題に対するトレーニングの最終段階において、ニューラルネットワークがニューラル・コラプス(NC)を示すことを示す。
我々の知る限り、これは回帰の文脈における神経崩壊に関する最初の経験的、理論的研究である。
論文 参考訳(メタデータ) (2024-09-06T10:45:58Z) - Physics-Informed Neural Network Lyapunov Functions: PDE
Characterization, Learning, and Verification [4.606000847428821]
神経リプノフ関数の訓練においてズボフ方程式を用いることで、アトラクションの真の領域に近いアトラクションの近似領域が得られることを示す。
次に、学習したリプノフ関数に対して十分条件を提供し、満足度モジュラー理論により容易に検証できる。
論文 参考訳(メタデータ) (2023-12-14T17:01:58Z) - Approximation of Nonlinear Functionals Using Deep ReLU Networks [7.876115370275732]
本稿では,ReLU(rerectified linear unit)アクティベーション関数に関連する機能深部ニューラルネットワークの近似能力について検討する。
さらに,弱規則性条件下での関数型深部ReLUネットワークの近似率を確立する。
論文 参考訳(メタデータ) (2023-04-10T08:10:11Z) - Nonparametric regression with modified ReLU networks [77.34726150561087]
ネットワーク重み行列を入力ベクトルに乗じる前に,まず関数$alpha$で修正したReLUニューラルネットワークによる回帰推定を考察する。
論文 参考訳(メタデータ) (2022-07-17T21:46:06Z) - Level set learning with pseudo-reversible neural networks for nonlinear
dimension reduction in function approximation [8.28646586439284]
本稿では,関数近似のための学習レベルセット(DRiLLS)を用いた次元削減手法を提案する。
提案手法は,高次元の入力変数を高次元のアクティブ変数に効果的に変換する擬似可逆ニューラルネットワーク(PRNN)モジュールである。
PRNNは、RevNetの使用によりNLL法に存在する非線形変換の可逆性制約を緩和するだけでなく、各サンプルの影響を適応的に重み付けし、学習された能動変数に対する関数の感度を制御する。
論文 参考訳(メタデータ) (2021-12-02T17:25:34Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
2層ニューラルネットワークによる関数近似について検討する。
この結果は線形(あるいは可溶性次元)法で達成できることを大幅に改善する。
論文 参考訳(メタデータ) (2021-07-14T03:03:56Z) - Automated and Sound Synthesis of Lyapunov Functions with SMT Solvers [70.70479436076238]
線形、非線形(ポリノミカル)およびパラメトリックモデルに対するリャプノフ関数を合成する。
パラメトリックテンプレートからLyapunov関数を合成するための帰納的フレームワークを利用する。
論文 参考訳(メタデータ) (2020-07-21T14:45:23Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Lipschitz Recurrent Neural Networks [100.72827570987992]
我々のリプシッツ再帰ユニットは、他の連続時間RNNと比較して、入力やパラメータの摂動に対してより堅牢であることを示す。
実験により,Lipschitz RNNは,ベンチマークタスクにおいて,既存のリカレントユニットよりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-06-22T08:44:52Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
本稿では,線形近似ニューラルネットワーク(LANN)を提案する。
ニューラルネットワークのトレーニングプロセスを実験的に検討し、オーバーフィッティングを検出する。
我々は、$L1$と$L2$正規化がモデルの複雑さの増加を抑制することを発見した。
論文 参考訳(メタデータ) (2020-06-16T07:38:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。