論文の概要: Nonparametric regression with modified ReLU networks
- arxiv url: http://arxiv.org/abs/2207.08306v1
- Date: Sun, 17 Jul 2022 21:46:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-19 16:20:54.325104
- Title: Nonparametric regression with modified ReLU networks
- Title(参考訳): 改良型ReLUネットワークによる非パラメトリック回帰
- Authors: Aleksandr Beknazaryan and Hailin Sang
- Abstract要約: ネットワーク重み行列を入力ベクトルに乗じる前に,まず関数$alpha$で修正したReLUニューラルネットワークによる回帰推定を考察する。
- 参考スコア(独自算出の注目度): 77.34726150561087
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We consider regression estimation with modified ReLU neural networks in which
network weight matrices are first modified by a function $\alpha$ before being
multiplied by input vectors. We give an example of continuous, piecewise linear
function $\alpha$ for which the empirical risk minimizers over the classes of
modified ReLU networks with $l_1$ and squared $l_2$ penalties attain, up to a
logarithmic factor, the minimax rate of prediction of unknown $\beta$-smooth
function.
- Abstract(参考訳): 本稿では,ネットワーク重み行列が入力ベクトルに乗算される前に$\alpha$関数によって修正されるreluニューラルネットワークを用いた回帰推定について検討する。
l_1$ と 2乗値 $l_2$ を持つ修正 relu ネットワークのクラスに対して経験的リスクを最小化する連続的線形関数 $\alpha$ の例を示し、対数係数まで、未知の $\beta$-smooth 関数の最小予測率を得る。
関連論文リスト
- Benign Overfitting for Regression with Trained Two-Layer ReLU Networks [14.36840959836957]
本稿では,2層完全連結ニューラルネットワークを用いた最小二乗回帰問題と,勾配流によるReLU活性化関数について検討する。
最初の結果は一般化結果であり、基礎となる回帰関数や、それらが有界であること以外のノイズを仮定する必要はない。
論文 参考訳(メタデータ) (2024-10-08T16:54:23Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
本稿では,超パラメトリック化された2層ニューラルネットワークの無限次元関数クラス上で定義される最小最適化問題について検討する。
i) 勾配降下指数アルゴリズムの収束と, (ii) ニューラルネットワークの表現学習に対処する。
その結果、ニューラルネットワークによって誘導される特徴表現は、ワッサーシュタイン距離で測定された$O(alpha-1)$で初期表現から逸脱することが許された。
論文 参考訳(メタデータ) (2024-04-18T16:46:08Z) - Provable Identifiability of Two-Layer ReLU Neural Networks via LASSO
Regularization [15.517787031620864]
LASSOの領域は、ファッショナブルで強力な非線形回帰モデルである2層ReLUニューラルネットワークに拡張される。
LASSO推定器はニューラルネットワークを安定的に再構築し,サンプル数が対数的にスケールする場合に$mathcalSstar$を識別可能であることを示す。
我々の理論は、2層ReLUニューラルネットワークのための拡張Restricted Isometry Property (RIP)ベースの分析フレームワークにある。
論文 参考訳(メタデータ) (2023-05-07T13:05:09Z) - Bounding the Width of Neural Networks via Coupled Initialization -- A
Worst Case Analysis [121.9821494461427]
2層ReLUネットワークに必要なニューロン数を著しく削減する方法を示す。
また、事前の作業を改善するための新しい下位境界を証明し、ある仮定の下では、最善を尽くすことができることを証明します。
論文 参考訳(メタデータ) (2022-06-26T06:51:31Z) - Memory-Efficient Backpropagation through Large Linear Layers [107.20037639738433]
Transformersのような現代のニューラルネットワークでは、線形層は後方通過時にアクティベーションを保持するために大きなメモリを必要とする。
本研究では,線形層によるバックプロパゲーションを実現するためのメモリ削減手法を提案する。
論文 参考訳(メタデータ) (2022-01-31T13:02:41Z) - Least-Squares Linear Dilation-Erosion Regressor Trained using Stochastic
Descent Gradient or the Difference of Convex Methods [2.055949720959582]
線形拡張・侵食回帰(ell$-DER)と呼ばれる回帰タスクのためのハイブリッド型モルフォロジーニューラルネットワークを提案する。
$ell$-DERモデルは、線形および形態素作用素の合成の凸結合によって与えられる。
論文 参考訳(メタデータ) (2021-07-12T18:41:59Z) - Online nonparametric regression with Sobolev kernels [99.12817345416846]
我々は、ソボレフ空間のクラス上の後悔の上限を$W_pbeta(mathcalX)$, $pgeq 2, beta>fracdp$ とする。
上界は minimax regret analysis で支えられ、$beta> fracd2$ または $p=infty$ の場合、これらの値は(本質的に)最適である。
論文 参考訳(メタデータ) (2021-02-06T15:05:14Z) - Regularization Matters: A Nonparametric Perspective on Overparametrized
Neural Network [20.132432350255087]
タンジェント降下(GD)によってトレーニングされた過度にパラメータ化されたニューラルネットワークは、任意のトレーニングデータを確実に過度に適合させることができる。
本稿では、過度にパラメータ化されたニューラルネットワークが、ランダムノイズの存在下での真のターゲット関数をいかに回復するかを考察する。
論文 参考訳(メタデータ) (2020-07-06T01:02:23Z) - Implicit Bias of Gradient Descent for Mean Squared Error Regression with
Two-Layer Wide Neural Networks [1.3706331473063877]
幅$n$浅いReLUネットワークをトレーニングする解は、トレーニングデータに適合する関数の$n-1/2$以内であることを示す。
また, トレーニング軌道はスムーズなスプラインの軌道によって捕捉され, 正規化強度は低下することを示した。
論文 参考訳(メタデータ) (2020-06-12T17:46:40Z) - Neural Networks are Convex Regularizers: Exact Polynomial-time Convex
Optimization Formulations for Two-layer Networks [70.15611146583068]
我々は、線形整列ユニット(ReLU)を用いた2層ニューラルネットワークのトレーニングの正確な表現を開発する。
我々の理論は半無限双対性と最小ノルム正規化を利用する。
論文 参考訳(メタデータ) (2020-02-24T21:32:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。