論文の概要: psPRF:Pansharpening Planar Neural Radiance Field for Generalized 3D Reconstruction Satellite Imagery
- arxiv url: http://arxiv.org/abs/2406.15707v1
- Date: Sat, 22 Jun 2024 02:02:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 21:04:37.138654
- Title: psPRF:Pansharpening Planar Neural Radiance Field for Generalized 3D Reconstruction Satellite Imagery
- Title(参考訳): psPRF:汎用3次元再構成衛星画像のための平面ニューラル放射場
- Authors: Tongtong Zhang, Yuanxiang Li,
- Abstract要約: 現在の衛星用NeRF変種のほとんどは特定のシーンのために設計されており、新しい幾何学への一般化には至っていない。
本稿では,低分解能RGB(LR-RGB)と高分解能パノクロマティック(HR-PAN)の画像にRational Polynomial Camera(RPC)を併用した平面ニューラルレージアンスフィールドであるpsPRFを紹介する。
シーン間におけるpsRPFの一般化能力を支援するため、プロジェクションロスを採用し、強力な幾何学的自己監督を実現する。
- 参考スコア(独自算出の注目度): 0.6445605125467574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most current NeRF variants for satellites are designed for one specific scene and fall short of generalization to new geometry. Additionally, the RGB images require pan-sharpening as an independent preprocessing step. This paper introduces psPRF, a Planar Neural Radiance Field designed for paired low-resolution RGB (LR-RGB) and high-resolution panchromatic (HR-PAN) images from satellite sensors with Rational Polynomial Cameras (RPC). To capture the cross-modal prior from both of the LR-RGB and HR-PAN images, for the Unet-shaped architecture, we adapt the encoder with explicit spectral-to-spatial convolution (SSConv) to enhance the multimodal representation ability. To support the generalization ability of psRPF across scenes, we adopt projection loss to ensure strong geometry self-supervision. The proposed method is evaluated with the multi-scene WorldView-3 LR-RGB and HR-PAN pairs, and achieves state-of-the-art performance.
- Abstract(参考訳): 現在の衛星用NeRF変種のほとんどは特定のシーンのために設計されており、新しい幾何学への一般化には至っていない。
さらに、RGBイメージは独立した前処理ステップとしてパンシャーピングを必要とする。
本稿では,低分解能RGB(LR-RGB)と高分解能パノクロマティック(HR-PAN)の画像にRational Polynomial Cameras(RPC)を併用した平面ニューラルラジアンスフィールドであるpsPRFを紹介する。
Unet型アーキテクチャでは, LR-RGBとHR-PANの両画像から先行するクロスモーダルをキャプチャするために, 露骨なスペクトル対空間畳み込み(SSConv)でエンコーダを適応させ, マルチモーダル表現能力を向上する。
シーン間におけるpsRPFの一般化能力を支援するため、プロジェクションロスを採用し、強力な幾何学的自己監督を実現する。
提案手法は,マルチシーンのWorldView-3 LR-RGBとHR-PANのペアを用いて評価し,最先端性能を実現する。
関連論文リスト
- PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction [37.14913599050765]
高忠実表面再構成を実現するために,高速平面型ガウススプラッティング再構成表現(PGSR)を提案する。
次に、大域的幾何精度を維持するために、一視点幾何、多視点測光、幾何正則化を導入する。
提案手法は3DGS法およびNeRF法よりも優れた高忠実度レンダリングと幾何再構成を維持しつつ,高速なトレーニングとレンダリングを実現する。
論文 参考訳(メタデータ) (2024-06-10T17:59:01Z) - SwinFuSR: an image fusion-inspired model for RGB-guided thermal image super-resolution [0.16385815610837165]
超高分解能(SR)法は、高周波の詳細が欠如しているため、しばしば熱画像に苦しむ。
SwinFusionにインスパイアされたSwinFuSRは、Swin変換器をベースとしたガイド付きSRアーキテクチャである。
提案手法は,Pak Signal to Noise Ratio (PSNR) とStructure SIMilarity (SSIM) の両面において,少ないパラメータと性能を有する。
論文 参考訳(メタデータ) (2024-04-22T19:01:18Z) - Pano-NeRF: Synthesizing High Dynamic Range Novel Views with Geometry
from Sparse Low Dynamic Range Panoramic Images [82.1477261107279]
そこで本研究では,Sparse LDRパノラマ画像からの照射場を用いて,忠実な幾何復元のための観測回数を増やすことを提案する。
実験により、照射場は幾何復元とHDR再構成の両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-12-26T08:10:22Z) - SGNet: Structure Guided Network via Gradient-Frequency Awareness for
Depth Map Super-Resolution [17.847216843129342]
深度超解像は高分解能(HR)深度を低分解能(LR)深度から復元することを目的としており、そこではRGB画像がこの課題を促進するためにしばしば使用される。
最近の画像誘導型DSRアプローチは、主に深度構造を再構築するための空間領域に焦点を当てている。
本稿では、勾配や周波数領域にもっと注意を払う構造案内ネットワーク(SGNet)を提案する。
論文 参考訳(メタデータ) (2023-12-10T07:17:06Z) - rpcPRF: Generalizable MPI Neural Radiance Field for Satellite Camera [0.76146285961466]
本稿では,多面体画像(MPI)を用いたRPO(Rational Polynomial Camera)のための平面神経放射場rpcPRFを提案する。
本稿では,3次元座標と画像の間の正確な形状を学習するために,予測されたMPIを誘導するために再投影監視を利用する。
我々は、放射場の描画技術を導入することにより、深層多視点ステレオ法から密集深度監視の厳密な要求を取り除いた。
論文 参考訳(メタデータ) (2023-10-11T04:05:11Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
カラー誘導DSRのためのSymmetric Uncertainty-aware Feature Transmission (SUFT)を提案する。
本手法は最先端の手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2023-06-01T06:35:59Z) - HDR Reconstruction from Bracketed Exposures and Events [12.565039752529797]
高品質なHDR画像の再構成は、現代の計算写真の中心にある。
特徴領域におけるブラケット画像とイベントを融合したマルチモーダルなエンドツーエンド学習型HDRイメージングシステムを提案する。
我々のフレームワークは、スライディングウィンドウを使用して入力イベントストリームをサブサンプリングすることで、イベントの時間分解能を高める。
論文 参考訳(メタデータ) (2022-03-28T15:04:41Z) - NeRF-SR: High-Quality Neural Radiance Fields using Super-Sampling [82.99453001445478]
主に低分解能(LR)入力を用いた高分解能(HR)新規ビュー合成のソリューションであるNeRF-SRを提案する。
提案手法は,多層パーセプトロンを用いて各点密度と色を予測するニューラルレージアンス場(NeRF)上に構築されている。
論文 参考訳(メタデータ) (2021-12-03T07:33:47Z) - Hyperspectral Pansharpening Based on Improved Deep Image Prior and
Residual Reconstruction [64.10636296274168]
高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能高分解能化
近年,深層畳み込みネットワーク(ConvNets)を用いたHSパンシャープ法が注目に値する結果を得た。
深層層の増加を抑えることで高レベルの特徴を学習することに焦点を当てた,新しいオーバーコンプリートネットワークHyperKiteを提案する。
論文 参考訳(メタデータ) (2021-07-06T14:11:03Z) - Tuning IR-cut Filter for Illumination-aware Spectral Reconstruction from
RGB [84.1657998542458]
再現精度は、使用中のRGBカメラのスペクトル応答に大きく依存していることが証明されている。
本稿では,既存のrgbカメラのフィルタアレイに基づくカラーイメージング機構を調査し,irカットフィルタの設計方法を提案する。
論文 参考訳(メタデータ) (2021-03-26T19:42:21Z) - Deep Burst Super-Resolution [165.90445859851448]
バースト超解像タスクのための新しいアーキテクチャを提案する。
我々のネットワークは複数のノイズRAW画像を入力として取り出し、出力として分解された超解像RGB画像を生成する。
実世界のデータのトレーニングと評価を可能にするため,BurstSRデータセットも導入する。
論文 参考訳(メタデータ) (2021-01-26T18:57:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。