How to Learn More? Exploring Kolmogorov-Arnold Networks for Hyperspectral Image Classification
- URL: http://arxiv.org/abs/2406.15719v1
- Date: Sat, 22 Jun 2024 03:31:02 GMT
- Title: How to Learn More? Exploring Kolmogorov-Arnold Networks for Hyperspectral Image Classification
- Authors: Ali Jamali, Swalpa Kumar Roy, Danfeng Hong, Bing Lu, Pedram Ghamisi,
- Abstract summary: Kolmogorov-Arnold Networks (KANs) were proposed as viable alternatives for vision transformers (ViTs)
In this study, we assess the effectiveness of KANs for complex hyperspectral image (HSI) data classification.
To enhance the HSI classification accuracy obtained by the KANs, we develop and propose a Hybrid architecture utilizing 1D, 2D, and 3D KANs.
- Score: 26.37105279142761
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional Neural Networks (CNNs) and vision transformers (ViTs) have shown excellent capability in complex hyperspectral image (HSI) classification. However, these models require a significant number of training data and are computational resources. On the other hand, modern Multi-Layer Perceptrons (MLPs) have demonstrated great classification capability. These modern MLP-based models require significantly less training data compared to CNNs and ViTs, achieving the state-of-the-art classification accuracy. Recently, Kolmogorov-Arnold Networks (KANs) were proposed as viable alternatives for MLPs. Because of their internal similarity to splines and their external similarity to MLPs, KANs are able to optimize learned features with remarkable accuracy in addition to being able to learn new features. Thus, in this study, we assess the effectiveness of KANs for complex HSI data classification. Moreover, to enhance the HSI classification accuracy obtained by the KANs, we develop and propose a Hybrid architecture utilizing 1D, 2D, and 3D KANs. To demonstrate the effectiveness of the proposed KAN architecture, we conducted extensive experiments on three newly created HSI benchmark datasets: QUH-Pingan, QUH-Tangdaowan, and QUH-Qingyun. The results underscored the competitive or better capability of the developed hybrid KAN-based model across these benchmark datasets over several other CNN- and ViT-based algorithms, including 1D-CNN, 2DCNN, 3D CNN, VGG-16, ResNet-50, EfficientNet, RNN, and ViT. The code are publicly available at (https://github.com/aj1365/HSIConvKAN)
Related papers
- Kolmogorov-Arnold Network Autoencoders [0.0]
Kolmogorov-Arnold Networks (KANs) are promising alternatives to Multi-Layer Perceptrons (MLPs)
KANs align closely with the Kolmogorov-Arnold representation theorem, potentially enhancing both model accuracy and interpretability.
Our results demonstrate that KAN-based autoencoders achieve competitive performance in terms of reconstruction accuracy.
arXiv Detail & Related papers (2024-10-02T22:56:00Z) - Subgraph Clustering and Atom Learning for Improved Image Classification [4.499833362998488]
We present the Graph Sub-Graph Network (GSN), a novel hybrid image classification model merging the strengths of Convolutional Neural Networks (CNNs) for feature extraction and Graph Neural Networks (GNNs) for structural modeling.
GSN employs k-means clustering to group graph nodes into clusters, facilitating the creation of subgraphs.
These subgraphs are then utilized to learn representative atoms for dictionary learning, enabling the identification of sparse, class-distinguishable features.
arXiv Detail & Related papers (2024-07-20T06:32:00Z) - HyperKAN: Kolmogorov-Arnold Networks make Hyperspectral Image Classificators Smarter [0.0699049312989311]
We propose the replacement of linear and convolutional layers of traditional networks with KAN-based counterparts.
These modifications allowed us to significantly increase the per-pixel classification accuracy for hyperspectral remote-sensing images.
The greatest effect was achieved for convolutional networks working exclusively on spectral data.
arXiv Detail & Related papers (2024-07-07T06:36:09Z) - Hybrid CNN Bi-LSTM neural network for Hyperspectral image classification [1.2691047660244332]
This paper proposes a neural network combining 3-D CNN, 2-D CNN and Bi-LSTM.
It could achieve 99.83, 99.98 and 100 percent accuracy using only 30 percent trainable parameters of the state-of-art model in IP, PU and SA datasets respectively.
arXiv Detail & Related papers (2024-02-15T15:46:13Z) - Unveiling the Unseen: Identifiable Clusters in Trained Depthwise
Convolutional Kernels [56.69755544814834]
Recent advances in depthwise-separable convolutional neural networks (DS-CNNs) have led to novel architectures.
This paper reveals another striking property of DS-CNN architectures: discernible and explainable patterns emerge in their trained depthwise convolutional kernels in all layers.
arXiv Detail & Related papers (2024-01-25T19:05:53Z) - Neural Attentive Circuits [93.95502541529115]
We introduce a general purpose, yet modular neural architecture called Neural Attentive Circuits (NACs)
NACs learn the parameterization and a sparse connectivity of neural modules without using domain knowledge.
NACs achieve an 8x speedup at inference time while losing less than 3% performance.
arXiv Detail & Related papers (2022-10-14T18:00:07Z) - Lightweight Hybrid CNN-ELM Model for Multi-building and Multi-floor
Classification [6.154022105385209]
We propose a lightweight combination of CNN and ELM, which provides a quick and accurate classification of building and floor.
As a result, the proposed model is 58% faster than the benchmark, with a slight improvement in the classification accuracy.
arXiv Detail & Related papers (2022-04-21T21:48:01Z) - A Battle of Network Structures: An Empirical Study of CNN, Transformer,
and MLP [121.35904748477421]
Convolutional neural networks (CNN) are the dominant deep neural network (DNN) architecture for computer vision.
Transformer and multi-layer perceptron (MLP)-based models, such as Vision Transformer and Vision-Mixer, started to lead new trends.
In this paper, we conduct empirical studies on these DNN structures and try to understand their respective pros and cons.
arXiv Detail & Related papers (2021-08-30T06:09:02Z) - Fusion of CNNs and statistical indicators to improve image
classification [65.51757376525798]
Convolutional Networks have dominated the field of computer vision for the last ten years.
Main strategy to prolong this trend relies on further upscaling networks in size.
We hypothesise that adding heterogeneous sources of information may be more cost-effective to a CNN than building a bigger network.
arXiv Detail & Related papers (2020-12-20T23:24:31Z) - Hyperspectral Classification Based on Lightweight 3-D-CNN With Transfer
Learning [67.40866334083941]
We propose an end-to-end 3-D lightweight convolutional neural network (CNN) for limited samples-based HSI classification.
Compared with conventional 3-D-CNN models, the proposed 3-D-LWNet has a deeper network structure, less parameters, and lower computation cost.
Our model achieves competitive performance for HSI classification compared to several state-of-the-art methods.
arXiv Detail & Related papers (2020-12-07T03:44:35Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
We propose a use of evolutionary search to facilitate the construction and training scheme when binarizing MobileNet.
Inspired by one-shot architecture search frameworks, we manipulate the idea of group convolution to design efficient 1-Bit Convolutional Neural Networks (CNNs)
Our objective is to come up with a tiny yet efficient binary neural architecture by exploring the best candidates of the group convolution.
arXiv Detail & Related papers (2020-05-13T13:25:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.