Modeling Unknown Stochastic Dynamical System Subject to External Excitation
- URL: http://arxiv.org/abs/2406.15747v1
- Date: Sat, 22 Jun 2024 06:21:44 GMT
- Title: Modeling Unknown Stochastic Dynamical System Subject to External Excitation
- Authors: Yuan Chen, Dongbin Xiu,
- Abstract summary: We present a numerical method for learning unknown nonautonomous dynamical system.
Our basic assumption is that the governing equations for the system are unavailable.
When a sufficient amount of such I/O data are available, our method is capable of learning the unknown dynamics.
- Score: 4.357350642401934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a numerical method for learning unknown nonautonomous stochastic dynamical system, i.e., stochastic system subject to time dependent excitation or control signals. Our basic assumption is that the governing equations for the stochastic system are unavailable. However, short bursts of input/output (I/O) data consisting of certain known excitation signals and their corresponding system responses are available. When a sufficient amount of such I/O data are available, our method is capable of learning the unknown dynamics and producing an accurate predictive model for the stochastic responses of the system subject to arbitrary excitation signals not in the training data. Our method has two key components: (1) a local approximation of the training I/O data to transfer the learning into a parameterized form; and (2) a generative model to approximate the underlying unknown stochastic flow map in distribution. After presenting the method in detail, we present a comprehensive set of numerical examples to demonstrate the performance of the proposed method, especially for long-term system predictions.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Data-driven Effective Modeling of Multiscale Stochastic Dynamical Systems [4.357350642401934]
We present a numerical method for learning the dynamics of slow components of unknown multiscale dynamical systems.
By utilizing the observation data, our proposed method is capable of constructing a generative model that can accurately capture the effective dynamics of the slow variables in distribution.
arXiv Detail & Related papers (2024-08-27T07:03:51Z) - Gaussian process learning of nonlinear dynamics [0.0]
We propose a new method that learns nonlinear dynamics through a Bayesian inference of characterizing model parameters.
We will discuss the applicability of the proposed method to several typical scenarios for dynamical systems.
arXiv Detail & Related papers (2023-12-19T14:27:26Z) - Modeling Unknown Stochastic Dynamical System via Autoencoder [3.8769921482808116]
We present a numerical method to learn an accurate predictive model for an unknown dynamical system from its trajectory data.
It employs the idea of autoencoder to identify the unobserved latent random variables.
It is also applicable to systems driven by non-Gaussian noises.
arXiv Detail & Related papers (2023-12-15T18:19:22Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Learning Unstable Dynamics with One Minute of Data: A
Differentiation-based Gaussian Process Approach [47.045588297201434]
We show how to exploit the differentiability of Gaussian processes to create a state-dependent linearized approximation of the true continuous dynamics.
We validate our approach by iteratively learning the system dynamics of an unstable system such as a 9-D segway.
arXiv Detail & Related papers (2021-03-08T05:08:47Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Knowledge-Based Learning of Nonlinear Dynamics and Chaos [3.673994921516517]
We present a universal learning framework for extracting predictive models from nonlinear systems based on observations.
Our framework can readily incorporate first principle knowledge because it naturally models nonlinear systems as continuous-time systems.
arXiv Detail & Related papers (2020-10-07T13:50:13Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
We study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs.
We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data.
We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
arXiv Detail & Related papers (2020-06-18T04:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.