Data-driven Effective Modeling of Multiscale Stochastic Dynamical Systems
- URL: http://arxiv.org/abs/2408.14821v1
- Date: Tue, 27 Aug 2024 07:03:51 GMT
- Title: Data-driven Effective Modeling of Multiscale Stochastic Dynamical Systems
- Authors: Yuan Chen, Dongbin Xiu,
- Abstract summary: We present a numerical method for learning the dynamics of slow components of unknown multiscale dynamical systems.
By utilizing the observation data, our proposed method is capable of constructing a generative model that can accurately capture the effective dynamics of the slow variables in distribution.
- Score: 4.357350642401934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a numerical method for learning the dynamics of slow components of unknown multiscale stochastic dynamical systems. While the governing equations of the systems are unknown, bursts of observation data of the slow variables are available. By utilizing the observation data, our proposed method is capable of constructing a generative stochastic model that can accurately capture the effective dynamics of the slow variables in distribution. We present a comprehensive set of numerical examples to demonstrate the performance of the proposed method.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Modeling Unknown Stochastic Dynamical System Subject to External Excitation [4.357350642401934]
We present a numerical method for learning unknown nonautonomous dynamical system.
Our basic assumption is that the governing equations for the system are unavailable.
When a sufficient amount of such I/O data are available, our method is capable of learning the unknown dynamics.
arXiv Detail & Related papers (2024-06-22T06:21:44Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Reservoir Computing with Error Correction: Long-term Behaviors of
Stochastic Dynamical Systems [5.815325960286111]
We propose a data-driven framework combining Reservoir Computing and Normalizing Flow to study this issue.
We verify the effectiveness of the proposed framework in several experiments, including the Van der Pal, El Nino-Southern Oscillation simplified model, and Lorenz system.
arXiv Detail & Related papers (2023-05-01T05:50:17Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Learning Unstable Dynamics with One Minute of Data: A
Differentiation-based Gaussian Process Approach [47.045588297201434]
We show how to exploit the differentiability of Gaussian processes to create a state-dependent linearized approximation of the true continuous dynamics.
We validate our approach by iteratively learning the system dynamics of an unstable system such as a 9-D segway.
arXiv Detail & Related papers (2021-03-08T05:08:47Z) - ImitationFlow: Learning Deep Stable Stochastic Dynamic Systems by
Normalizing Flows [29.310742141970394]
We introduce ImitationFlow, a novel Deep generative model that allows learning complex globally stable, nonlinear dynamics.
We show the effectiveness of our method with both standard datasets and a real robot experiment.
arXiv Detail & Related papers (2020-10-25T14:49:46Z) - Bayesian differential programming for robust systems identification
under uncertainty [14.169588600819546]
This paper presents a machine learning framework for Bayesian systems identification from noisy, sparse and irregular observations of nonlinear dynamical systems.
The proposed method takes advantage of recent developments in differentiable programming to propagate gradient information through ordinary differential equation solvers.
The use of sparsity-promoting priors enables the discovery of interpretable and parsimonious representations for the underlying latent dynamics.
arXiv Detail & Related papers (2020-04-15T00:51:14Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
We propose a novel probabilistic sequence model that excels at capturing high variability in time series data.
Our method uses temporal latent variables to capture information about the underlying data pattern.
The efficacy of the proposed method is demonstrated on a range of synthetic and real-world sequential data.
arXiv Detail & Related papers (2020-02-24T19:30:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.