論文の概要: Privacy Implications of Explainable AI in Data-Driven Systems
- arxiv url: http://arxiv.org/abs/2406.15789v1
- Date: Sat, 22 Jun 2024 08:51:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 20:35:12.282646
- Title: Privacy Implications of Explainable AI in Data-Driven Systems
- Title(参考訳): データ駆動システムにおける説明可能なAIのプライバシ含意
- Authors: Fatima Ezzeddine,
- Abstract要約: 機械学習(ML)モデルは、解釈可能性の欠如に悩まされる。
透明性の欠如は、しばしばMLモデルのブラックボックスの性質と呼ばれ、信頼を損なう。
XAI技術は、内部の意思決定プロセスを説明するためのフレームワークと方法を提供することによって、この問題に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Machine learning (ML) models, demonstrably powerful, suffer from a lack of interpretability. The absence of transparency, often referred to as the black box nature of ML models, undermines trust and urges the need for efforts to enhance their explainability. Explainable AI (XAI) techniques address this challenge by providing frameworks and methods to explain the internal decision-making processes of these complex models. Techniques like Counterfactual Explanations (CF) and Feature Importance play a crucial role in achieving this goal. Furthermore, high-quality and diverse data remains the foundational element for robust and trustworthy ML applications. In many applications, the data used to train ML and XAI explainers contain sensitive information. In this context, numerous privacy-preserving techniques can be employed to safeguard sensitive information in the data, such as differential privacy. Subsequently, a conflict between XAI and privacy solutions emerges due to their opposing goals. Since XAI techniques provide reasoning for the model behavior, they reveal information relative to ML models, such as their decision boundaries, the values of features, or the gradients of deep learning models when explanations are exposed to a third entity. Attackers can initiate privacy breaching attacks using these explanations, to perform model extraction, inference, and membership attacks. This dilemma underscores the challenge of finding the right equilibrium between understanding ML decision-making and safeguarding privacy.
- Abstract(参考訳): 機械学習(ML)モデルは、明らかに強力であり、解釈可能性の欠如に悩まされている。
透明性の欠如は、しばしばMLモデルのブラックボックスの性質と呼ばれ、信頼を損ね、その説明可能性を高める努力の必要性を喚起する。
説明可能なAI(XAI)技術は、これらの複雑なモデルの内部決定プロセスを説明するためのフレームワークと方法を提供することで、この問題に対処する。
対実的説明(CF)や特徴の重要性といったテクニックは、この目標を達成する上で重要な役割を担います。
さらに、高品質で多様なデータが、堅牢で信頼性の高いMLアプリケーションの基礎的な要素として残っています。
多くのアプリケーションにおいて、MLとXAIの説明器のトレーニングに使用されるデータは機密情報を含んでいる。
このコンテキストでは、差分プライバシーなど、データ内の機密情報を保護するために、多数のプライバシ保存技術を使用することができる。
その後、XAIとプライバシソリューションの対立は、その反対の目標のために現れます。
XAI技術はモデル動作の推論を提供するため、決定境界や特徴値、説明が第3のエンティティに露出した場合のディープラーニングモデルの勾配といったMLモデルに関する情報を明らかにする。
攻撃者はこれらの説明を使ってプライバシー侵害攻撃を開始し、モデル抽出、推論、およびメンバーシップ攻撃を行うことができる。
このジレンマは、ML意思決定の理解とプライバシ保護の間の適切な均衡を見つけるという課題を浮き彫りにしている。
関連論文リスト
- CHILLI: A data context-aware perturbation method for XAI [3.587367153279351]
機械学習(ML)モデルの信頼性は評価が難しいが、リスクの高いアプリケーションや倫理的に敏感なアプリケーションでは重要である。
本稿では,文脈に意識された摂動を生成することで,データコンテキストをXAIに組み込む新しいフレームワークCHILLIを提案する。
これは説明の正確さと正確さを両立させることが示されている。
論文 参考訳(メタデータ) (2024-07-10T10:18:07Z) - Knowledge Distillation-Based Model Extraction Attack using GAN-based Private Counterfactual Explanations [1.6576983459630268]
本稿では,ML プラットフォーム内で MEA を実行する上で,モデル説明,特に非現実的説明をどのように活用できるかを検討することに注力する。
本稿では,代替モデルの抽出効率を高めるため,知識蒸留(KD)に基づくMEAの新しいアプローチを提案する。
また,差分プライバシー(DP)の有効性を緩和戦略として評価した。
論文 参考訳(メタデータ) (2024-04-04T10:28:55Z) - Machine Learning Robustness: A Primer [12.426425119438846]
この議論はロバストネスの詳細な定義から始まり、MLモデルが様々な環境条件と予期せぬ環境条件で安定した性能を維持する能力であることを示している。
この章では、データバイアスやモデル複雑性、未特定のMLパイプラインの落とし穴など、堅牢性を阻害する要因について詳しく説明している。
議論は、デバイアスや拡張といったデータ中心のアプローチから始まる、堅牢性を促進するための改善戦略を探求する。
論文 参考訳(メタデータ) (2024-04-01T03:49:42Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - Accountable and Explainable Methods for Complex Reasoning over Text [5.571369922847262]
機械学習モデルのアカウンタビリティと透明性は、政策、法学、哲学、計算機科学の研究によって決定的なデシダータとして位置づけられている。
この論文は、テキストによる複雑な推論タスクのために開発されたMLモデルの説明責任と透明性に関する知識を拡大する。
論文 参考訳(メタデータ) (2022-11-09T15:14:52Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。