Repeater-Like Asynchronous Measurement-Device-Independent Quantum Conference Key Agreement
- URL: http://arxiv.org/abs/2406.15853v2
- Date: Tue, 18 Mar 2025 08:57:54 GMT
- Title: Repeater-Like Asynchronous Measurement-Device-Independent Quantum Conference Key Agreement
- Authors: Yu-Shuo Lu, Yuan-Mei Xie, Yao Fu, Hua-Lei Yin, Zeng-Bing Chen,
- Abstract summary: Quantum conference key agreement enables secure communication among multiple parties by leveraging multipartite entanglement.<n>We propose a measurement-device-independent quantum conference key agreement protocol that employs asynchronous Greenberger-Horne-Zeilinger state measurement.
- Score: 14.261895897404726
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum conference key agreement enables secure communication among multiple parties by leveraging multipartite entanglement, which is expected to play a crucial role in future quantum networks. However, the practical application of this technology has been severely limited by the experimental complexity and low efficiency associated with the requirement for synchronous detection of multipartite entangled states. In this work, we propose a measurement-device-independent quantum conference key agreement protocol that employs asynchronous Greenberger-Horne-Zeilinger state measurement. Our protocol enables a linear scaling of the conference key rate among multiple parties, demonstrating performance comparable to that of the single-repeater scheme in quantum networks. Additionally, we achieve intercity transmission distances with composable security under finite-key conditions. By adopting the generalized asynchronous pairing strategy, our approach eliminates the need for complex global phase locking techniques. Furthermore, by integrating asynchronous pairing with ring-interference network structure, our method provides insights for various quantum tasks beyond quantum communication, such as multiparty computing and quantum repeaters.
Related papers
- No quantum advantage without classical communication: fundamental limitations of quantum networks [0.0]
We show that quantum networks relying on the long-distance distribution of bipartite entanglement, combined with local operations and shared randomness, cannot achieve a relevant quantum advantage.
Specifically, we prove that these networks do not help in preparing resourceful quantum states such as Greenberger-Horne-Zeilinger states or cluster states.
arXiv Detail & Related papers (2025-03-12T15:30:02Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Multi-field quantum conferencing overcomes the network capacity limit [14.261895897404726]
Quantum conferencing enables multiple nodes within a quantum network to share a secure group key for private message broadcasting.
The key rate is limited by the repeaterless capacity to distribute multiparticle entangled states across the network.
We propose a practical, multi-field scheme that breaks this limit, involving virtually establishing Greenberger-Horne-Zeilinger states.
arXiv Detail & Related papers (2024-07-01T01:50:51Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Asynchronous Quantum Repeater using Multiple Quantum Memory [0.6445605125467574]
A full-fledged quantum network relies on the formation of entangled links between remote location with the help of quantum repeaters.
We propose a quantum repeater protocol using the idea of post-matching, which retains the same efficiency as the single-photon interference protocol.
arXiv Detail & Related papers (2024-01-11T08:24:37Z) - Measurement-Device-Independent Quantum Secret Sharing [2.556756699768804]
Quantum secret sharing plays an important role in quantum communications and secure multiparty computation.
We present a new measurement-device-independent quantum secret sharing protocol, which can double the space distance between the dealer and each sharer for quantum transmission.
arXiv Detail & Related papers (2023-05-18T06:55:29Z) - Breaking universal limitations on quantum conference key agreement
without quantum memory [6.300599548850421]
We report a measurement-device-independent quantum conference key agreement protocol with enhanced transmission efficiency over lossy channel.
Our protocol can break key rate bounds on quantum communication over quantum network without quantum memory.
Based on our results, we anticipate that our protocol will play an indispensable role in constructing multipartite quantum network.
arXiv Detail & Related papers (2022-12-10T06:37:53Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - A coherence-witnessing game and applications to semi-device-independent
quantum key distribution [1.024113475677323]
We introduce a coherence-based, semi-device-independent, semi-quantum key distribution protocol built upon a noise-robust version of a coherence equality game.
Security is proven in the bounded quantum storage model, requiring users to implement only classical operations.
arXiv Detail & Related papers (2021-03-11T17:55:34Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.