NeuralSCF: Neural network self-consistent fields for density functional theory
- URL: http://arxiv.org/abs/2406.15873v1
- Date: Sat, 22 Jun 2024 15:24:08 GMT
- Title: NeuralSCF: Neural network self-consistent fields for density functional theory
- Authors: Feitong Song, Ji Feng,
- Abstract summary: Kohn-Sham density functional theory (KS-DFT) has found widespread application in accurate electronic structure calculations.
We propose a neural network self-consistent fields (NeuralSCF) framework that establishes the Kohn-Sham density map as a deep learning objective.
- Score: 1.7667864049272723
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kohn-Sham density functional theory (KS-DFT) has found widespread application in accurate electronic structure calculations. However, it can be computationally demanding especially for large-scale simulations, motivating recent efforts toward its machine-learning (ML) acceleration. We propose a neural network self-consistent fields (NeuralSCF) framework that establishes the Kohn-Sham density map as a deep learning objective, which encodes the mechanics of the Kohn-Sham equations. Modeling this map with an SE(3)-equivariant graph transformer, NeuralSCF emulates the Kohn-Sham self-consistent iterations to obtain electron densities, from which other properties can be derived. NeuralSCF achieves state-of-the-art accuracy in electron density prediction and derived properties, featuring exceptional zero-shot generalization to a remarkable range of out-of-distribution systems. NeuralSCF reveals that learning from KS-DFT's intrinsic mechanics significantly enhances the model's accuracy and transferability, offering a promising stepping stone for accelerating electronic structure calculations through mechanics learning.
Related papers
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
This work proposes a novel physics-informed neural network, KKT-hPINN, which rigorously guarantees hard linear equality constraints.
Experiments on Aspen models of a stirred-tank reactor unit, an extractive distillation subsystem, and a chemical plant demonstrate that this model can further enhance the prediction accuracy.
arXiv Detail & Related papers (2024-02-11T17:40:26Z) - Speed Limits for Deep Learning [67.69149326107103]
Recent advancement in thermodynamics allows bounding the speed at which one can go from the initial weight distribution to the final distribution of the fully trained network.
We provide analytical expressions for these speed limits for linear and linearizable neural networks.
Remarkably, given some plausible scaling assumptions on the NTK spectra and spectral decomposition of the labels -- learning is optimal in a scaling sense.
arXiv Detail & Related papers (2023-07-27T06:59:46Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - KineticNet: Deep learning a transferable kinetic energy functional for
orbital-free density functional theory [13.437597619451568]
KineticNet is an equivariant deep neural network architecture based on point convolutions adapted to the prediction of quantities on molecular quadrature grids.
For the first time, chemical accuracy of the learned functionals is achieved across input densities and geometries of tiny molecules.
arXiv Detail & Related papers (2023-05-08T17:43:31Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - On Energy-Based Models with Overparametrized Shallow Neural Networks [44.74000986284978]
Energy-based models (EBMs) are a powerful framework for generative modeling.
In this work we focus on shallow neural networks.
We show that models trained in the so-called "active" regime provide a statistical advantage over their associated "lazy" or kernel regime.
arXiv Detail & Related papers (2021-04-15T15:34:58Z) - Deep-Learning Density Functional Theory Hamiltonian for Efficient ab
initio Electronic-Structure Calculation [13.271547916205675]
We develop a deep neural network approach to represent DFT Hamiltonian (DeepH) of crystalline materials.
The method provides a solution to the accuracy-efficiency dilemma of DFT and opens opportunities to explore large-scale material systems.
arXiv Detail & Related papers (2021-04-08T14:08:10Z) - DeepDFT: Neural Message Passing Network for Accurate Charge Density
Prediction [0.0]
DeepDFT is a deep learning model for predicting the electronic charge density around atoms.
The accuracy and scalability of the model are demonstrated for molecules, solids and liquids.
arXiv Detail & Related papers (2020-11-04T16:56:08Z) - Accelerating Finite-temperature Kohn-Sham Density Functional Theory with
Deep Neural Networks [2.7035666571881856]
We present a numerical modeling workflow based on machine learning (ML) which reproduces the the total energies produced by Kohn-Sham density functional theory (DFT) at finite electronic temperature.
Based on deep neural networks, our workflow yields the local density of states (LDOS) for a given atomic configuration.
We demonstrate the efficacy of this approach for both solid and liquid metals and compare results between independent and unified machine-learning models for solid and liquid aluminum.
arXiv Detail & Related papers (2020-10-10T05:38:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.