DeepDFT: Neural Message Passing Network for Accurate Charge Density
Prediction
- URL: http://arxiv.org/abs/2011.03346v1
- Date: Wed, 4 Nov 2020 16:56:08 GMT
- Title: DeepDFT: Neural Message Passing Network for Accurate Charge Density
Prediction
- Authors: Peter Bj{\o}rn J{\o}rgensen and Arghya Bhowmik
- Abstract summary: DeepDFT is a deep learning model for predicting the electronic charge density around atoms.
The accuracy and scalability of the model are demonstrated for molecules, solids and liquids.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce DeepDFT, a deep learning model for predicting the electronic
charge density around atoms, the fundamental variable in electronic structure
simulations from which all ground state properties can be calculated. The model
is formulated as neural message passing on a graph, consisting of interacting
atom vertices and special query point vertices for which the charge density is
predicted. The accuracy and scalability of the model are demonstrated for
molecules, solids and liquids. The trained model achieves lower average
prediction errors than the observed variations in charge density obtained from
density functional theory simulations using different exchange correlation
functionals.
Related papers
- NeuralSCF: Neural network self-consistent fields for density functional theory [1.7667864049272723]
Kohn-Sham density functional theory (KS-DFT) has found widespread application in accurate electronic structure calculations.
We propose a neural network self-consistent fields (NeuralSCF) framework that establishes the Kohn-Sham density map as a deep learning objective.
arXiv Detail & Related papers (2024-06-22T15:24:08Z) - CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
This work introduces the Cognitive Diffusion Probabilistic Models (CogDPM)
CogDPM features a precision estimation method based on the hierarchical sampling capabilities of diffusion models and weight the guidance with precision weights estimated by the inherent property of diffusion models.
We apply CogDPM to real-world prediction tasks using the United Kindom precipitation and surface wind datasets.
arXiv Detail & Related papers (2024-05-03T15:54:50Z) - Higher-Order Equivariant Neural Networks for Charge Density Prediction in Materials [3.7655047338409893]
ChargE3Net is an E(3)-equivariant graph neural network for predicting electron density in atomic systems.
We show that ChargE3Net exceeds the performance of prior work on diverse sets of molecules and materials.
arXiv Detail & Related papers (2023-12-08T21:56:19Z) - Orbital-Free Density Functional Theory with Continuous Normalizing Flows [54.710176363763296]
Orbital-free density functional theory (OF-DFT) provides an alternative approach for calculating the molecular electronic energy.
Our model successfully replicates the electronic density for a diverse range of chemical systems.
arXiv Detail & Related papers (2023-11-22T16:42:59Z) - KineticNet: Deep learning a transferable kinetic energy functional for
orbital-free density functional theory [13.437597619451568]
KineticNet is an equivariant deep neural network architecture based on point convolutions adapted to the prediction of quantities on molecular quadrature grids.
For the first time, chemical accuracy of the learned functionals is achieved across input densities and geometries of tiny molecules.
arXiv Detail & Related papers (2023-05-08T17:43:31Z) - Electronic-structure properties from atom-centered predictions of the
electron density [0.0]
electron density of a molecule or material has recently received major attention as a target quantity of machine-learning models.
We propose a gradient-based approach to minimize the loss function of the regression problem in an optimized and highly sparse feature space.
We show that starting from the predicted density a single Kohn-Sham diagonalization step can be performed to access total energy components that carry an error of just 0.1 meV/atom.
arXiv Detail & Related papers (2022-06-28T15:35:55Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z) - Quantum deep field: data-driven wave function, electron density
generation, and atomization energy prediction and extrapolation with machine
learning [7.106986689736826]
Deep neural networks (DNNs) have been used to successfully predict molecular properties calculated based on the Kohn--Sham density functional theory (KS-DFT)
This letter presents the quantum deep field (QDF), which provides the electron density with an unsupervised but end-to-end physics-informed modeling by learning the atomization energy on a large-scale dataset.
arXiv Detail & Related papers (2020-11-16T13:15:16Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.