SimSMoE: Solving Representational Collapse via Similarity Measure
- URL: http://arxiv.org/abs/2406.15883v1
- Date: Sat, 22 Jun 2024 16:10:45 GMT
- Title: SimSMoE: Solving Representational Collapse via Similarity Measure
- Authors: Giang Do, Hung Le, Truyen Tran,
- Abstract summary: Sparse mixture of experts (SMoE) have emerged as an effective approach for scaling large language models while keeping a constant computational cost.
We present Similarity-based Sparse Mixture of Experts (SimSMoE), a novel similarity of neural network algorithm, that guarantees a solution to the representation collapse issue.
- Score: 34.20340688374905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sparse mixture of experts (SMoE) have emerged as an effective approach for scaling large language models while keeping a constant computational cost. Regardless of several notable successes of SMoE, effective training such architecture remains elusive due to the representation collapse problem, which in turn harms model performance and causes parameter redundancy. In this work, we present Similarity-based Sparse Mixture of Experts (SimSMoE), a novel similarity of neural network algorithm, that guarantees a solution to address the representation collapse issue between experts given a fixed FLOPs budget. We conduct extensive empirical evaluations on three large language models for both Pre-training and Fine-tuning tasks to illustrate the efficacy, robustness, and scalability of our method. The results demonstrate that SimSMoE significantly enhances existing routing policy and outperforms other SMoE training methods in performance for the tasks.
Related papers
- DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.
We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.
Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - USDRL: Unified Skeleton-Based Dense Representation Learning with Multi-Grained Feature Decorrelation [24.90512145836643]
We introduce a Unified Skeleton-based Dense Representation Learning framework based on feature decorrelation.
We show that our approach significantly outperforms the current state-of-the-art (SOTA) approaches.
arXiv Detail & Related papers (2024-12-12T12:20:27Z) - On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling problem on a continuous domain for (multimodal) self-supervised representation learning.
We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - Retraining-Free Merging of Sparse MoE via Hierarchical Clustering [14.858134039539697]
This paper introduces Hierarchical Clustering for Sparsely activated Mixture of Experts (HC-SMoE)
HC-SMoE is a task-agnostic expert merging framework for parameter reduction without retraining.
We provide theoretical analysis and evaluations across multiple zero-shot language tasks to demonstrate HC-SMoE's effectiveness in state-of-the-art models including Qwen and Mixtral.
arXiv Detail & Related papers (2024-10-11T07:36:14Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - On the KL-Divergence-based Robust Satisficing Model [2.425685918104288]
robustness satisficing framework has attracted increasing attention from academia.
We present analytical interpretations, diverse performance guarantees, efficient and stable numerical methods, convergence analysis, and an extension tailored for hierarchical data structures.
We demonstrate the superior performance of our model compared to state-of-the-art benchmarks.
arXiv Detail & Related papers (2024-08-17T10:05:05Z) - Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
We propose a method of grouping and pruning similar experts to improve the model's parameter efficiency.
We validate the effectiveness of our method by pruning three state-of-the-art MoE architectures.
The evaluation shows that our method outperforms other model pruning methods on a range of natural language tasks.
arXiv Detail & Related papers (2024-07-12T17:25:02Z) - Efficient Multi-Model Fusion with Adversarial Complementary Representation Learning [26.393644289860084]
Single-model systems often suffer from deficiencies in tasks such as speaker verification (SV) and image classification.
We propose an adversarial complementary representation learning (ACoRL) framework that enables newly trained models to avoid previously acquired knowledge.
arXiv Detail & Related papers (2024-04-24T07:47:55Z) - CompeteSMoE -- Effective Training of Sparse Mixture of Experts via
Competition [52.2034494666179]
Sparse mixture of experts (SMoE) offers an appealing solution to scale up the model complexity beyond the mean of increasing the network's depth or width.
We propose a competition mechanism to address this fundamental challenge of representation collapse.
By routing inputs only to experts with the highest neural response, we show that, under mild assumptions, competition enjoys the same convergence rate as the optimal estimator.
arXiv Detail & Related papers (2024-02-04T15:17:09Z) - Diversifying the Mixture-of-Experts Representation for Language Models with Orthogonal Optimizer [59.43462055143123]
The Mixture of Experts (MoE) has emerged as a highly successful technique in deep learning.
In this study, we shed light on the homogeneous representation problem, wherein experts in the MoE fail to specialize and lack diversity.
We propose an alternating training strategy that encourages each expert to update in a direction to the subspace spanned by other experts.
arXiv Detail & Related papers (2023-10-15T07:20:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.