論文の概要: Federated Adversarial Learning for Robust Autonomous Landing Runway Detection
- arxiv url: http://arxiv.org/abs/2406.15925v1
- Date: Sat, 22 Jun 2024 19:31:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 19:53:14.110744
- Title: Federated Adversarial Learning for Robust Autonomous Landing Runway Detection
- Title(参考訳): ロバストな自律着陸滑走路検出のためのフェデレーション逆学習
- Authors: Yi Li, Plamen Angelov, Zhengxin Yu, Alvaro Lopez Pellicer, Neeraj Suri,
- Abstract要約: 本稿では,着陸滑走路を検出するための対向学習フレームワークを提案する。
我々の知る限りでは、着陸滑走路検出における対向的なサンプル問題に対処する連合学習の事例としては、これが初めてである。
- 参考スコア(独自算出の注目度): 6.029462194041386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the development of deep learning techniques in autonomous landing systems continues to grow, one of the major challenges is trust and security in the face of possible adversarial attacks. In this paper, we propose a federated adversarial learning-based framework to detect landing runways using paired data comprising of clean local data and its adversarial version. Firstly, the local model is pre-trained on a large-scale lane detection dataset. Then, instead of exploiting large instance-adaptive models, we resort to a parameter-efficient fine-tuning method known as scale and shift deep features (SSF), upon the pre-trained model. Secondly, in each SSF layer, distributions of clean local data and its adversarial version are disentangled for accurate statistics estimation. To the best of our knowledge, this marks the first instance of federated learning work that address the adversarial sample problem in landing runway detection. Our experimental evaluations over both synthesis and real images of Landing Approach Runway Detection (LARD) dataset consistently demonstrate good performance of the proposed federated adversarial learning and robust to adversarial attacks.
- Abstract(参考訳): 自律着陸システムにおけるディープラーニング技術の開発が成長を続ける中、大きな課題の1つは、敵の攻撃の可能性がある場合の信頼とセキュリティである。
本論文では,クリーンなローカルデータとその逆バージョンからなるペアデータを用いて着陸滑走路を検出するための,連合型対角学習に基づくフレームワークを提案する。
まず、局所モデルは大規模レーン検出データセット上で事前訓練される。
そこで我々は,大規模なインスタンス適応モデルを活用する代わりに,事前学習モデルに基づいて,スケール・アンド・シフト・ディープ・フィーチャー(SSF)と呼ばれるパラメータ効率の高い微調整手法を用いる。
第2に、各SSF層において、正確な統計推定のために、クリーンなローカルデータの分布とその逆バージョンが切り離されている。
我々の知る限りでは、着陸滑走路検出における対向的なサンプル問題に対処する連合学習の事例としては、これが初めてである。
ランディング・アプローチ・ランウェイ検出(LARD)データセットの合成と実画像の比較実験により, 提案した対角学習の優れた性能と, 対角攻撃に対する堅牢性について一貫した評価を行った。
関連論文リスト
- Defending against Data Poisoning Attacks in Federated Learning via User Elimination [0.0]
本稿では,フェデレーションモデルにおける敵ユーザの戦略的排除に焦点を当てた,新たなフレームワークを提案する。
我々は、ローカルトレーニングインスタンスが収集したメタデータと差分プライバシー技術を統合することにより、フェデレートアルゴリズムのアグリゲーションフェーズにおける異常を検出する。
提案手法の有効性を実証し,ユーザのプライバシとモデル性能を維持しながらデータ汚染のリスクを大幅に軽減する。
論文 参考訳(メタデータ) (2024-04-19T10:36:00Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Certified Robustness in Federated Learning [54.03574895808258]
我々は,フェデレーショントレーニングとパーソナライゼーション,および認定ロバストネスの相互作用について検討した。
単純なフェデレーション平均化技術は, より正確であるだけでなく, より精度の高いロバストモデルの構築にも有効であることがわかった。
論文 参考訳(メタデータ) (2022-06-06T12:10:53Z) - Backdoor Defense in Federated Learning Using Differential Testing and
Outlier Detection [24.562359531692504]
バックドア攻撃からFLシステムを保護するための自動防御フレームワークであるDifFenseを提案する。
提案手法は,グローバルモデルの平均バックドア精度を4%以下に低減し,偽陰性率ゼロを達成する。
論文 参考訳(メタデータ) (2022-02-21T17:13:03Z) - Unified Instance and Knowledge Alignment Pretraining for Aspect-based
Sentiment Analysis [96.53859361560505]
Aspect-based Sentiment Analysis (ABSA) は、ある側面に対する感情の極性を決定することを目的としている。
事前トレーニングと下流ABSAデータセットの間には、常に深刻なドメインシフトが存在する。
我々は,バニラ・プレトレイン・ファインチューンパイプラインにアライメント事前訓練フレームワークを導入する。
論文 参考訳(メタデータ) (2021-10-26T04:03:45Z) - Improving Model Robustness with Latent Distribution Locally and Globally [28.99007833855102]
本研究では,大域的多様体の観点からの敵攻撃に対するディープニューラルネットワークのモデルロバスト性について考察する。
本稿では,ロバストな最適化による新しい対角訓練法と,潜在マニフォールド適応例(LMAE)を生成するための抽出可能な方法を提案する。
The proposed adversarial training with latent Distribution (ATLD) method defends against adversarial attack by crafting LMAEs with the latent manifold in unsupervised manner。
論文 参考訳(メタデータ) (2021-07-08T07:52:53Z) - Privacy-Preserving Federated Learning on Partitioned Attributes [6.661716208346423]
フェデレーション学習は、ローカルデータやモデルを公開することなく、協調的なトレーニングを促進する。
ローカルモデルをチューニングし、プライバシー保護された中間表現をリリースする逆学習ベースの手順を紹介します。
精度低下を緩和するために,前方後方分割アルゴリズムに基づく防御法を提案する。
論文 参考訳(メタデータ) (2021-04-29T14:49:14Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
本稿では、教師なしクロスドメイン歩行認識のための領域ギャップを橋渡しするTransferable Neighborhood Discovery (TraND) フレームワークを提案する。
我々は、潜在空間におけるラベルなしサンプルの自信ある近傍を自動的に発見するために、エンドツーエンドのトレーニング可能なアプローチを設計する。
提案手法は,CASIA-BとOU-LPの2つの公開データセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-02-09T03:07:07Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。