論文の概要: Aligning Query Representation with Rewritten Query and Relevance Judgments in Conversational Search
- arxiv url: http://arxiv.org/abs/2407.20189v1
- Date: Mon, 29 Jul 2024 17:14:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 12:45:22.738077
- Title: Aligning Query Representation with Rewritten Query and Relevance Judgments in Conversational Search
- Title(参考訳): 会話検索におけるリライトクエリと関連判断を用いたクエリ表現のアライメント
- Authors: Fengran Mo, Chen Qu, Kelong Mao, Yihong Wu, Zhan Su, Kaiyu Huang, Jian-Yun Nie,
- Abstract要約: 我々は、より優れたクエリ表現モデルをトレーニングするために、リライトされたクエリと会話検索データの関連判断の両方を活用する。
提案したモデル --Query Representation Alignment Conversational Retriever(QRACDR)は、8つのデータセットでテストされる。
- 参考スコア(独自算出の注目度): 32.35446999027349
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational search supports multi-turn user-system interactions to solve complex information needs. Different from the traditional single-turn ad-hoc search, conversational search encounters a more challenging problem of context-dependent query understanding with the lengthy and long-tail conversational history context. While conversational query rewriting methods leverage explicit rewritten queries to train a rewriting model to transform the context-dependent query into a stand-stone search query, this is usually done without considering the quality of search results. Conversational dense retrieval methods use fine-tuning to improve a pre-trained ad-hoc query encoder, but they are limited by the conversational search data available for training. In this paper, we leverage both rewritten queries and relevance judgments in the conversational search data to train a better query representation model. The key idea is to align the query representation with those of rewritten queries and relevant documents. The proposed model -- Query Representation Alignment Conversational Dense Retriever, QRACDR, is tested on eight datasets, including various settings in conversational search and ad-hoc search. The results demonstrate the strong performance of QRACDR compared with state-of-the-art methods, and confirm the effectiveness of representation alignment.
- Abstract(参考訳): 対話型検索は複雑な情報要求を解決するためにマルチターンユーザシステムインタラクションをサポートする。
従来の1ターンのアドホック検索とは異なり、会話検索はコンテキストに依存したクエリ理解において、長い会話履歴コンテキストと長い会話履歴コンテキストとのより困難な問題に遭遇する。
会話型クエリ書き換え手法では、明示的なリライトクエリを活用してリライトモデルをトレーニングし、コンテキスト依存クエリをスタンドストーン検索クエリに変換するが、通常は検索結果の品質を考慮せずに行われる。
対話型高密度検索手法は,事前学習したアドホッククエリエンコーダを改善するために微調整を用いるが,訓練に利用可能な対話型検索データによって制限される。
本稿では,より優れたクエリ表現モデルをトレーニングするために,会話検索データにおけるリライトクエリと関連判断の両方を活用する。
キーとなるアイデアは、クエリ表現を書き換えたクエリや関連するドキュメントと整合させることです。
提案したモデル --Query Representation Alignment Conversational Dense Retriever(QRACDR)は、会話検索やアドホック検索のさまざまな設定を含む8つのデータセットでテストされる。
その結果,QRACDRは最先端手法と比較して高い性能を示し,表現アライメントの有効性を確認した。
関連論文リスト
- Conversational Query Reformulation with the Guidance of Retrieved Documents [4.438698005789677]
本稿では,最初に検索した文書からキーのinfFormationを活用することでクエリを洗練するフレームワークである GuideCQRを紹介する。
GuideCQRは,人間によるクエリであっても,さまざまなタイプのクエリを用いた会話検索において,さらなるパフォーマンス向上が期待できることを示す。
論文 参考訳(メタデータ) (2024-07-17T07:39:16Z) - Query-oriented Data Augmentation for Session Search [71.84678750612754]
本稿では,検索ログの強化とモデリングの強化を目的としたクエリ指向データ拡張を提案する。
検索コンテキストの最も重要な部分を変更することで補足的なトレーニングペアを生成する。
我々は、現在のクエリを変更するためのいくつかの戦略を開発し、その結果、様々な難易度で新しいトレーニングデータを得る。
論文 参考訳(メタデータ) (2024-07-04T08:08:33Z) - Database-Augmented Query Representation for Information Retrieval [59.57065228857247]
データベース拡張クエリ表現(DAQu)と呼ばれる新しい検索フレームワークを提案する。
DAQuは、元のクエリを複数のテーブルにまたがるさまざまな(クエリ関連の)メタデータで拡張する。
リレーショナルデータベースのメタデータを組み込む様々な検索シナリオにおいてDAQuを検証する。
論文 参考訳(メタデータ) (2024-06-23T05:02:21Z) - Effective and Efficient Conversation Retrieval for Dialogue State Tracking with Implicit Text Summaries [48.243879779374836]
LLM (Large Language Models) を用いたDST (Few-shot dialogue state tracking) では,会話検索を効果的かつ効率的に行うことで,学習の迅速化を図っている。
従来は検索キーやクエリとして生の対話コンテキストを使用していた。
会話のテキスト要約に基づいて会話検索を行う。
LLMに基づく会話要約器がクエリとキー生成に採用され、効果的な内部製品探索が可能となる。
論文 参考訳(メタデータ) (2024-02-20T14:31:17Z) - SSP: Self-Supervised Post-training for Conversational Search [63.28684982954115]
本稿では,対話型検索モデルを効率的に初期化するための3つの自己教師型タスクを備えた学習後パラダイムであるフルモデル(モデル)を提案する。
提案手法の有効性を検証するために,CAsT-19 と CAsT-20 の2つのベンチマークデータセットを用いて,会話検索タスクにモデルにより訓練後の会話エンコーダを適用した。
論文 参考訳(メタデータ) (2023-07-02T13:36:36Z) - Learning to Relate to Previous Turns in Conversational Search [26.931718474500652]
検索効率を改善する効果的な方法は、現在のクエリを履歴クエリで拡張することである。
本稿では,現在のクエリに有用な履歴クエリを選択するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-05T03:00:10Z) - ConvGQR: Generative Query Reformulation for Conversational Search [37.54018632257896]
ConvGQRは、生成事前訓練された言語モデルに基づいて会話クエリを再構成する新しいフレームワークである。
本稿では,クエリ再構成と検索の両方を最適化する知識注入機構を提案する。
論文 参考訳(メタデータ) (2023-05-25T01:45:06Z) - Decoding a Neural Retriever's Latent Space for Query Suggestion [28.410064376447718]
本稿では,有意なクエリをその潜在表現から復号することが可能であること,また,潜在空間の正しい方向に移動すると,関連する段落を検索するクエリを復号することができることを示す。
クエリデコーダを用いて、MSMarcoのクエリ再構成の大規模な合成データセットを生成する。
このデータに基づいて、クエリー提案の適用のために擬似関連フィードバック(PRF)T5モデルを訓練する。
論文 参考訳(メタデータ) (2022-10-21T16:19:31Z) - Query Resolution for Conversational Search with Limited Supervision [63.131221660019776]
本稿では,双方向トランスフォーマに基づくニューラルクエリ解決モデルQuReTeCを提案する。
我々はQuReTeCが最先端モデルより優れており、また、QuReTeCのトレーニングに必要な人為的なデータ量を大幅に削減するために、我々の遠隔監視手法が有効であることを示す。
論文 参考訳(メタデータ) (2020-05-24T11:37:22Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
マルチステージアドホックIRシステムにクエリ再構成を組み込んだ会話経路検索(ConvPR)に取り組む。
本稿では,1項の重要度推定と2項のニューラルクエリ書き換えという2つの手法を提案する。
前者に対しては、周波数に基づく信号を用いて会話コンテキストから抽出した重要な用語を用いて会話クエリを拡張する。
後者では,会話クエリを,事前訓練されたシーケンス列列列モデルを用いて,自然な,スタンドアロンの,人間の理解可能なクエリに再構成する。
論文 参考訳(メタデータ) (2020-05-05T14:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。