論文の概要: Zero-Shot Cross-Lingual NER Using Phonemic Representations for Low-Resource Languages
- arxiv url: http://arxiv.org/abs/2406.16030v1
- Date: Sun, 23 Jun 2024 06:38:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 19:23:47.232478
- Title: Zero-Shot Cross-Lingual NER Using Phonemic Representations for Low-Resource Languages
- Title(参考訳): 低音源言語のための音声表現を用いたゼロショット言語間NER
- Authors: Jimin Sohn, Haeji Jung, Alex Cheng, Jooeon Kang, Yilin Du, David R. Mortensen,
- Abstract要約: 既存のゼロショットの言語間NERアプローチは、ターゲット言語についてかなりの事前知識を必要とする。
我々は,異なる言語の表現間のギャップを埋めるために,国際音声アルファベット(IPA)に基づく音声表現を用いたNERの新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 5.580028223598989
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing zero-shot cross-lingual NER approaches require substantial prior knowledge of the target language, which is impractical for low-resource languages. In this paper, we propose a novel approach to NER using phonemic representation based on the International Phonetic Alphabet (IPA) to bridge the gap between representations of different languages. Our experiments show that our method significantly outperforms baseline models in extremely low-resource languages, with the highest average F-1 score (46.38%) and lowest standard deviation (12.67), particularly demonstrating its robustness with non-Latin scripts.
- Abstract(参考訳): 既存のゼロショットの言語間NERアプローチでは、ターゲット言語の事前知識が必要であり、低リソース言語では実用的ではない。
本稿では,国際音声アルファベット(IPA)に基づく音声表現を用いたNERの新しい手法を提案する。
提案手法は,F-1スコアが46.38%,標準偏差が12.67であり,特に非ラテン文字で頑健であることを示す。
関連論文リスト
- Zero-shot Sentiment Analysis in Low-Resource Languages Using a
Multilingual Sentiment Lexicon [78.12363425794214]
私たちは、34の言語にまたがるゼロショットの感情分析タスクに重点を置いています。
文レベルの感情データを使用しない多言語語彙を用いた事前学習は、英語の感情データセットに微調整されたモデルと比較して、ゼロショット性能が優れていることを示す。
論文 参考訳(メタデータ) (2024-02-03T10:41:05Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
インドネシアの地方言語について事例研究を行う。
データセット構築におけるオンラインスクラップ,人文翻訳,および母語話者による段落作成の有効性を比較した。
本研究は,母語話者による段落作成によって生成されたデータセットが,語彙的多様性と文化的内容の点で優れた品質を示すことを示す。
論文 参考訳(メタデータ) (2023-09-19T14:42:33Z) - Language-universal phonetic encoder for low-resource speech recognition [28.21805271848413]
我々は、低リソースのASR性能を改善するために、International Phonetic Alphabet (IPA) ベースの言語ユニバーサル音声モデルを活用する。
我々のアプローチと適応は、ドメインや言語ミスマッチしたシナリオであっても、極端に低リソースな言語に有効です。
論文 参考訳(メタデータ) (2023-05-19T10:24:30Z) - Can Character-based Language Models Improve Downstream Task Performance
in Low-Resource and Noisy Language Scenarios? [0.0]
我々は、ナラビジ(NArabizi)と呼ばれるラテン文字の拡張を用いて書かれた北アフリカ方言のアラビア語に焦点を当てている。
ナラビジの99k文のみを学習し,小さな木バンクで微調整したキャラクタベースモデルは,大規模多言語モデルとモノリンガルモデルで事前学習した同じアーキテクチャで得られたものに近い性能を示す。
論文 参考訳(メタデータ) (2021-10-26T14:59:16Z) - Towards Zero-shot Language Modeling [90.80124496312274]
人間の言語学習に誘導的に偏りを持つニューラルモデルを構築した。
類型的に多様な訓練言語のサンプルからこの分布を推測する。
我々は、保留言語に対する遠隔監視として、追加の言語固有の側情報を利用する。
論文 参考訳(メタデータ) (2021-08-06T23:49:18Z) - Anchor-based Bilingual Word Embeddings for Low-Resource Languages [76.48625630211943]
良質な単言語単語埋め込み(MWEs)は、大量のラベルのないテキストを持つ言語向けに構築することができる。
MWEは、数千の単語変換ペアだけでバイリンガル空間に整列することができる。
本稿では,高資源言語におけるベクトル空間を出発点とするBWEの構築手法を提案する。
論文 参考訳(メタデータ) (2020-10-23T19:17:00Z) - Building Low-Resource NER Models Using Non-Speaker Annotation [58.78968578460793]
言語横断的な手法はこれらの懸念に対処する上で顕著な成功を収めた。
本稿では,Non-Speaker''(NS)アノテーションを用いた低リソース名前付きエンティティ認識(NER)モデル構築のための補完的アプローチを提案する。
NSアノテータの使用は、現代の文脈表現上に構築された言語間メソッドよりも、一貫した結果が得られることを示す。
論文 参考訳(メタデータ) (2020-06-17T03:24:38Z) - That Sounds Familiar: an Analysis of Phonetic Representations Transfer
Across Languages [72.9927937955371]
我々は、他言語に存在するリソースを用いて、多言語自動音声認識モデルを訓練する。
我々は,多言語設定における全言語間での大幅な改善と,多言語設定におけるスターク劣化を観察した。
分析の結果、ひとつの言語に固有の電話でさえ、他の言語からのトレーニングデータを追加することで大きなメリットがあることがわかった。
論文 参考訳(メタデータ) (2020-05-16T22:28:09Z) - Deep Learning Models for Multilingual Hate Speech Detection [5.977278650516324]
本稿では、16の異なるソースから9言語で多言語ヘイトスピーチを大規模に分析する。
低リソース設定では、ロジスティック回帰を用いたLASER埋め込みのような単純なモデルが最善である。
ゼロショット分類の場合、イタリア語やポルトガル語のような言語は良い結果をもたらす。
論文 参考訳(メタデータ) (2020-04-14T13:14:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。