Composite Material Design for Optimized Fracture Toughness Using Machine Learning
- URL: http://arxiv.org/abs/2406.16166v1
- Date: Sun, 23 Jun 2024 17:01:14 GMT
- Title: Composite Material Design for Optimized Fracture Toughness Using Machine Learning
- Authors: Mohammad Naqizadeh Jahromi, Mohammad Ravandi,
- Abstract summary: This paper investigates the optimization of 2D and 3D composite structures using machine learning (ML) techniques.
It focuses on fracture toughness and crack propagation in the Double Cantilever Beam (DCB) test.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the optimization of 2D and 3D composite structures using machine learning (ML) techniques, focusing on fracture toughness and crack propagation in the Double Cantilever Beam (DCB) test. By exploring the intricate relationship between microstructural arrangements and macroscopic properties of composites, the study demonstrates the potential of ML as a powerful tool to expedite the design optimization process, offering notable advantages over traditional finite element analysis. The research encompasses four distinct cases, examining crack propagation and fracture toughness in both 2D and 3D composite models. Through the application of ML algorithms, the study showcases the capability for rapid and accurate exploration of vast design spaces in composite materials. The findings highlight the efficiency of ML in predicting mechanical behaviors with limited training data, paving the way for broader applications in composite design and optimization. This work contributes to advancing the understanding of ML's role in enhancing the efficiency of composite material design processes.
Related papers
- Creating a Microstructure Latent Space with Rich Material Information for Multiphase Alloy Design [19.10106845551149]
This study introduces an improved alloy design algorithm that integrates authentic microstructural information to establish precise CPSP relationships.
The approach utilizes a deep-learning framework based on a variational autoencoder to map real microstructural data to a latent space.
arXiv Detail & Related papers (2024-09-04T12:26:19Z) - Improving Molecular Modeling with Geometric GNNs: an Empirical Study [56.52346265722167]
This paper focuses on the impact of different canonicalization methods, (2) graph creation strategies, and (3) auxiliary tasks, on performance, scalability and symmetry enforcement.
Our findings and insights aim to guide researchers in selecting optimal modeling components for molecular modeling tasks.
arXiv Detail & Related papers (2024-07-11T09:04:12Z) - Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
We identify and test new hybrid architectures constructed from a variety of computational primitives.
We experimentally validate the resulting architectures via an extensive compute-optimal and a new state-optimal scaling law analysis.
We find MAD synthetics to correlate with compute-optimal perplexity, enabling accurate evaluation of new architectures.
arXiv Detail & Related papers (2024-03-26T16:33:12Z) - Mechanical Characterization and Inverse Design of Stochastic Architected
Metamaterials Using Neural Operators [2.4918888803900727]
Machine learning is emerging as a transformative tool for the design of architected materials.
Here, we introduce a new end-to-end scientific ML framework, leveraging deep neural operators (DeepONet)
Results obtained from spinodal microstructures, printed using two-photon lithography, reveal that the prediction error for mechanical responses is within a range of 5 - 10%.
arXiv Detail & Related papers (2023-11-23T05:23:15Z) - LS-DYNA Machine Learning-based Multiscale Method for Nonlinear Modeling
of Short Fiber-Reinforced Composites [7.891561501854125]
Short-fiber-reinforced composites (SFRC) are high-performance engineering materials for lightweight structural applications in the automotive and electronics industries.
We present a machine learning-based multiscale method by integrating injection molding-induced microstructures, material homogenization, and Deep Material Network (DMN) for structural analysis of SFRC.
arXiv Detail & Related papers (2023-01-06T22:33:19Z) - Data-driven multi-scale modeling and robust optimization of composite
structure with uncertainty quantification [0.42581756453559755]
This chapter demonstrates advanced data-driven methods and outlines the capability that must be developed/added for the multi-scale modeling of advanced composite materials.
It proposes a multi-scale modeling method for composite structures based on a finite element method (FEM) simulation driven by surrogate models/emulators.
arXiv Detail & Related papers (2022-10-13T16:40:11Z) - A Supervised Machine Learning Approach for Accelerating the Design of
Particulate Composites: Application to Thermal Conductivity [0.0]
A supervised machine learning (ML) based computational methodology for the design of particulate multifunctional composite materials is presented.
Design variables are physical descriptors of the material microstructure that directly link microstructure to the material's properties.
Our optimized ML method is trained over the generated database and establishes the complex relationship between the structure and properties.
arXiv Detail & Related papers (2020-09-30T18:18:00Z) - Performance Indicator in Multilinear Compressive Learning [106.12874293597754]
The Multilinear Compressive Learning (MCL) framework was proposed to efficiently optimize the sensing and learning steps when working with multidimensional signals.
In this paper, we analyze the relationship between the input signal resolution, the number of compressed measurements and the learning performance of MCL.
arXiv Detail & Related papers (2020-09-22T11:27:50Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z) - Multilinear Compressive Learning with Prior Knowledge [106.12874293597754]
Multilinear Compressive Learning (MCL) framework combines Multilinear Compressive Sensing and Machine Learning into an end-to-end system.
Key idea behind MCL is the assumption of the existence of a tensor subspace which can capture the essential features from the signal for the downstream learning task.
In this paper, we propose a novel solution to address both of the aforementioned requirements, i.e., How to find those tensor subspaces in which the signals of interest are highly separable?
arXiv Detail & Related papers (2020-02-17T19:06:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.