LitLLMs, LLMs for Literature Review: Are we there yet?
- URL: http://arxiv.org/abs/2412.15249v2
- Date: Fri, 21 Mar 2025 14:56:58 GMT
- Title: LitLLMs, LLMs for Literature Review: Are we there yet?
- Authors: Shubham Agarwal, Gaurav Sahu, Abhay Puri, Issam H. Laradji, Krishnamurthy DJ Dvijotham, Jason Stanley, Laurent Charlin, Christopher Pal,
- Abstract summary: This paper explores the zero-shot abilities of recent Large Language Models in assisting with the writing of literature reviews based on an abstract.<n>For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper.<n>In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review.
- Score: 15.785989492351684
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Literature reviews are an essential component of scientific research, but they remain time-intensive and challenging to write, especially due to the recent influx of research papers. This paper explores the zero-shot abilities of recent Large Language Models (LLMs) in assisting with the writing of literature reviews based on an abstract. We decompose the task into two components: 1. Retrieving related works given a query abstract, and 2. Writing a literature review based on the retrieved results. We analyze how effective LLMs are for both components. For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper and then retrieves potentially relevant papers by querying an external knowledge base. Additionally, we study a prompting-based re-ranking mechanism with attribution and show that re-ranking doubles the normalized recall compared to naive search methods, while providing insights into the LLM's decision-making process. In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review. To evaluate different LLM-based literature review methods, we create test sets from arXiv papers using a protocol designed for rolling use with newly released LLMs to avoid test set contamination in zero-shot evaluations. We release this evaluation protocol to promote additional research and development in this regard. Our empirical results suggest that LLMs show promising potential for writing literature reviews when the task is decomposed into smaller components of retrieval and planning. Our project page including a demonstration system and toolkit can be accessed here: https://litllm.github.io.
Related papers
- Can LLMs Generate Tabular Summaries of Science Papers? Rethinking the Evaluation Protocol [83.90769864167301]
Literature review tables are essential for summarizing and comparing collections of scientific papers.
We explore the task of generating tables that best fulfill a user's informational needs given a collection of scientific papers.
Our contributions focus on three key challenges encountered in real-world use: (i) User prompts are often under-specified; (ii) Retrieved candidate papers frequently contain irrelevant content; and (iii) Task evaluation should move beyond shallow text similarity techniques.
arXiv Detail & Related papers (2025-04-14T14:52:28Z) - Large Language Models for Automated Literature Review: An Evaluation of Reference Generation, Abstract Writing, and Review Composition [2.048226951354646]
Large language models (LLMs) have emerged as a potential solution to automate the complex processes involved in writing literature reviews.
This study introduces a framework to automatically evaluate the performance of LLMs in three key tasks of literature writing.
arXiv Detail & Related papers (2024-12-18T08:42:25Z) - Are We There Yet? Revealing the Risks of Utilizing Large Language Models in Scholarly Peer Review [66.73247554182376]
Large language models (LLMs) have led to their integration into peer review.
The unchecked adoption of LLMs poses significant risks to the integrity of the peer review system.
We show that manipulating 5% of the reviews could potentially cause 12% of the papers to lose their position in the top 30% rankings.
arXiv Detail & Related papers (2024-12-02T16:55:03Z) - LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
Large language models (LLMs) have shown remarkable versatility in various generative tasks.
This study focuses on the topic of LLMs assist NLP Researchers.
To our knowledge, this is the first work to provide such a comprehensive analysis.
arXiv Detail & Related papers (2024-06-24T01:30:22Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.
The question of how reliable these evaluators are has emerged as a crucial research question.
We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - Benchmarking LLMs on the Semantic Overlap Summarization Task [9.656095701778975]
This paper comprehensively evaluates Large Language Models (LLMs) on the Semantic Overlap Summarization (SOS) task.
We report well-established metrics like ROUGE, BERTscore, and SEM-F1$ on two different datasets of alternative narratives.
arXiv Detail & Related papers (2024-02-26T20:33:50Z) - Large Language Models: A Survey [66.39828929831017]
Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks.
LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data.
arXiv Detail & Related papers (2024-02-09T05:37:09Z) - LitLLM: A Toolkit for Scientific Literature Review [15.785989492351684]
We propose a toolkit that operates on Retrieval Augmented Generation (RAG) principles.
Our system first initiates a web search to retrieve relevant papers.
Second, the system re-ranks the retrieved papers based on the user-provided abstract.
Third, the related work section is generated based on the re-ranked results and the abstract.
arXiv Detail & Related papers (2024-02-02T02:41:28Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
Recent large language models (LLM) are leveraging human feedback to improve their generation quality.
We propose LLMRefine, an inference time optimization method to refine LLM's output.
We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA), and topical summarization.
LLMRefine consistently outperforms all baseline approaches, achieving improvements up to 1.7 MetricX points on translation tasks, 8.1 ROUGE-L on ASQA, 2.2 ROUGE-L on topical summarization.
arXiv Detail & Related papers (2023-11-15T19:52:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.