Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation
- URL: http://arxiv.org/abs/2406.16282v1
- Date: Mon, 24 Jun 2024 03:09:15 GMT
- Title: Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation
- Authors: Yuchen Yang, Yingdong Shi, Cheems Wang, Xiantong Zhen, Yuxuan Shi, Jun Xu,
- Abstract summary: This work strives to reduce memory overhead in fine-tuning from perspectives of activation function and layer normalization.
We apply our Approx-BP theory to backpropagation training and derive memory-efficient alternatives of GELU and SiLU activation functions.
In addition, we introduce a Memory-Sharing Backpropagation strategy, which enables the activation memory to be shared by two adjacent layers.
- Score: 29.139579820699495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fine-tuning pretrained large models to downstream tasks is an important problem, which however suffers from huge memory overhead due to large-scale parameters. This work strives to reduce memory overhead in fine-tuning from perspectives of activation function and layer normalization. To this end, we propose the Approximate Backpropagation (Approx-BP) theory, which provides the theoretical feasibility of decoupling the forward and backward passes. We apply our Approx-BP theory to backpropagation training and derive memory-efficient alternatives of GELU and SiLU activation functions, which use derivative functions of ReLUs in the backward pass while keeping their forward pass unchanged. In addition, we introduce a Memory-Sharing Backpropagation strategy, which enables the activation memory to be shared by two adjacent layers, thereby removing activation memory usage redundancy. Our method neither induces extra computation nor reduces training efficiency. We conduct extensive experiments with pretrained vision and language models, and the results demonstrate that our proposal can reduce up to $\sim$$30\%$ of the peak memory usage. Our code is released at https://github.com/yyyyychen/LowMemoryBP.
Related papers
- Memory Layers at Scale [67.00854080570979]
This work takes memory layers beyond proof-of-concept, proving their utility at contemporary scale.
On downstream tasks, language models augmented with our improved memory layer outperform dense models with more than twice the budget, as well as mixture-of-expert models when matched for both compute and parameters.
We provide a fully parallelizable memory layer implementation, demonstrating scaling laws with up to 128B memory parameters, pretrained to 1 trillion tokens, comparing to base models with up to 8B parameters.
arXiv Detail & Related papers (2024-12-12T23:56:57Z) - CompAct: Compressed Activations for Memory-Efficient LLM Training [7.837209773889032]
CompAct is a technique that reduces peak memory utilization on GPU by 25-30% for pretraining and 50% for fine-tuning of LLMs.
By storing low-rank, compressed activations to be used in the backward pass we greatly reduce the required memory.
We expect CompAct's savings to scale even higher for larger models.
arXiv Detail & Related papers (2024-10-20T10:24:38Z) - MEMO: Fine-grained Tensor Management For Ultra-long Context LLM Training [24.066283519769968]
Large Language Models (LLMs) have been trained using extended context lengths to foster more creative applications.
We propose MEMO, a novel framework for fine-grained activation memory management.
MeMO achieves an average of 1.97x and 1.80x MFU compared to Megatron-LM and DeepSpeed.
arXiv Detail & Related papers (2024-07-16T18:59:49Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections [35.133698935322634]
Large language models (LLMs) have recently emerged as powerful tools for tackling many language-processing tasks.
We identify and characterise the important components needed for effective model convergence using gradient descent.
This result leads us to a cheap and memory-efficient algorithm for both fine-tuning and pre-training LLMs.
arXiv Detail & Related papers (2024-05-28T09:23:14Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
We propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance.
Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones.
arXiv Detail & Related papers (2023-05-24T15:52:08Z) - Mesa: A Memory-saving Training Framework for Transformers [58.78933015299703]
We present Mesa, a memory-saving training framework for Transformers.
Mesa uses exact activations during forward pass while storing a low-precision version of activations to reduce memory consumption during training.
Experiments on ImageNet, CIFAR-100 and ADE20K demonstrate that Mesa can reduce half of the memory footprints during training.
arXiv Detail & Related papers (2021-11-22T11:23:01Z) - Improving Computational Efficiency in Visual Reinforcement Learning via
Stored Embeddings [89.63764845984076]
We present Stored Embeddings for Efficient Reinforcement Learning (SEER)
SEER is a simple modification of existing off-policy deep reinforcement learning methods.
We show that SEER does not degrade the performance of RLizable agents while significantly saving computation and memory.
arXiv Detail & Related papers (2021-03-04T08:14:10Z) - Kanerva++: extending The Kanerva Machine with differentiable, locally
block allocated latent memory [75.65949969000596]
Episodic and semantic memory are critical components of the human memory model.
We develop a new principled Bayesian memory allocation scheme that bridges the gap between episodic and semantic memory.
We demonstrate that this allocation scheme improves performance in memory conditional image generation.
arXiv Detail & Related papers (2021-02-20T18:40:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.