Vocabulary-level Memory Efficiency for Language Model Fine-tuning
- URL: http://arxiv.org/abs/2309.08708v2
- Date: Tue, 25 Mar 2025 13:30:00 GMT
- Title: Vocabulary-level Memory Efficiency for Language Model Fine-tuning
- Authors: Miles Williams, Nikolaos Aletras,
- Abstract summary: We show that a significant proportion of the vocabulary remains unused during fine-tuning.<n>We propose a simple yet effective approach that leverages this finding to minimize memory usage.<n>Our approach does not impact downstream task performance, while allowing more efficient use of computational resources.
- Score: 36.1039389951318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The extensive memory footprint of language model (LM) fine-tuning poses a challenge for both researchers and practitioners. LMs use an embedding matrix to represent extensive vocabularies, forming a substantial proportion of the model parameters. While previous work towards memory-efficient fine-tuning has focused on minimizing the number of trainable parameters, reducing the memory footprint of the embedding matrix has yet to be explored. We first demonstrate that a significant proportion of the vocabulary remains unused during fine-tuning. We then propose a simple yet effective approach that leverages this finding to minimize memory usage. We show that our approach provides substantial reductions in memory usage across a wide range of models and tasks. Notably, our approach does not impact downstream task performance, while allowing more efficient use of computational resources.
Related papers
- Quantifying Memory Utilization with Effective State-Size [73.52115209375343]
We develop a measure of textitmemory utilization'
This metric is tailored to the fundamental class of systems with textitinput-invariant and textitinput-varying linear operators
arXiv Detail & Related papers (2025-04-28T08:12:30Z) - A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models [22.725326215887435]
We introduce a Randomized Subspace Optimization framework for pre-training and fine-tuning Large Language Models.
Our approach decomposes the high-dimensional training problem into a series of lower-dimensional subproblems.
This structured reduction in dimensionality allows our method to simultaneously reduce memory usage for both activations and states.
arXiv Detail & Related papers (2025-02-11T03:32:10Z) - Memory Layers at Scale [67.00854080570979]
This work takes memory layers beyond proof-of-concept, proving their utility at contemporary scale.
On downstream tasks, language models augmented with our improved memory layer outperform dense models with more than twice the budget, as well as mixture-of-expert models when matched for both compute and parameters.
We provide a fully parallelizable memory layer implementation, demonstrating scaling laws with up to 128B memory parameters, pretrained to 1 trillion tokens, comparing to base models with up to 8B parameters.
arXiv Detail & Related papers (2024-12-12T23:56:57Z) - Expanding Sparse Tuning for Low Memory Usage [103.43560327427647]
We propose a method named SNELL (Sparse tuning with kerNELized LoRA) for sparse tuning with low memory usage.
To achieve low memory usage, SNELL decomposes the tunable matrix for sparsification into two learnable low-rank matrices.
A competition-based sparsification mechanism is further proposed to avoid the storage of tunable weight indexes.
arXiv Detail & Related papers (2024-11-04T04:58:20Z) - SVFit: Parameter-Efficient Fine-Tuning of Large Pre-Trained Models Using Singular Values [12.137869917556415]
Large pre-trained models (LPMs) have demonstrated exceptional performance in diverse natural language processing and computer vision tasks.
fully fine-tuning these models poses substantial memory challenges, particularly in resource-constrained environments.
We propose SVFit, a novel PEFT approach that leverages singular value decomposition (SVD) to low-rank matrices using critical singular values as trainable parameters.
arXiv Detail & Related papers (2024-09-09T08:44:53Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach [87.8330887605381]
We show how to adapt a pre-trained Vision Transformer to downstream recognition tasks with only a few learnable parameters.
We synthesize a task-specific query with a learnable and lightweight module, which is independent of the pre-trained model.
Our method achieves state-of-the-art performance under memory constraints, showcasing its applicability in real-world situations.
arXiv Detail & Related papers (2024-07-09T15:45:04Z) - Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation [29.139579820699495]
This work strives to reduce memory overhead in fine-tuning from perspectives of activation function and layer normalization.
We apply our Approx-BP theory to backpropagation training and derive memory-efficient alternatives of GELU and SiLU activation functions.
In addition, we introduce a Memory-Sharing Backpropagation strategy, which enables the activation memory to be shared by two adjacent layers.
arXiv Detail & Related papers (2024-06-24T03:09:15Z) - VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections [35.133698935322634]
Large language models (LLMs) have recently emerged as powerful tools for tackling many language-processing tasks.
We identify and characterise the important components needed for effective model convergence using gradient descent.
This result leads us to a cheap and memory-efficient algorithm for both fine-tuning and pre-training LLMs.
arXiv Detail & Related papers (2024-05-28T09:23:14Z) - Athena: Efficient Block-Wise Post-Training Quantization for Large Language Models Using Second-Order Matrix Derivative Information [5.756323337411276]
Large Language Models (LLMs) have advanced natural language processing tasks such as machine translation, text generation, and sentiment analysis.
Their large size, often consisting of billions of parameters, poses challenges for storage, computation, and deployment.
We propose Athena, a novel algorithm for efficient block-wise post-training quantization of LLMs.
arXiv Detail & Related papers (2024-05-24T03:14:29Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
We introduce low-memory optimization with adaptive learning rate (AdaLomo) for large language models.
AdaLomo results on par with AdamW, while significantly reducing memory requirements, thereby lowering the hardware barrier to training large language models.
arXiv Detail & Related papers (2023-10-16T09:04:28Z) - Make Pre-trained Model Reversible: From Parameter to Memory Efficient
Fine-Tuning [6.451743797015637]
We propose memory-efficient fine-tuning (MEFT) for pre-trained language models.
MEFT inserts adapters into a PLM, preserving the PLM's starting point and making it reversible without additional pre-training.
MEFT significantly reduces the activation memory up to 84% of full fine-tuning with a negligible amount of trainable parameters.
arXiv Detail & Related papers (2023-06-01T09:26:17Z) - Dynamic Context Pruning for Efficient and Interpretable Autoregressive Transformers [29.319666323947708]
We present a novel approach that dynamically prunes contextual information while preserving the model's expressiveness.
Our method employs a learnable mechanism that determines which uninformative tokens can be dropped from the context.
Our reference implementation achieves up to $2times$ increase in inference throughput and even greater memory savings.
arXiv Detail & Related papers (2023-05-25T07:39:41Z) - Numerical Optimizations for Weighted Low-rank Estimation on Language
Model [73.12941276331316]
Singular value decomposition (SVD) is one of the most popular compression methods that approximates a target matrix with smaller matrices.
Standard SVD treats the parameters within the matrix with equal importance, which is a simple but unrealistic assumption.
We show that our method can perform better than current SOTA methods in neural-based language models.
arXiv Detail & Related papers (2022-11-02T00:58:02Z) - A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental
Learning [56.450090618578]
Class-Incremental Learning (CIL) aims to train a model with limited memory size to meet this requirement.
We show that when counting the model size into the total budget and comparing methods with aligned memory size, saving models do not consistently work.
We propose a simple yet effective baseline, denoted as MEMO for Memory-efficient Expandable MOdel.
arXiv Detail & Related papers (2022-05-26T08:24:01Z) - Parameter-Efficient Sparsity for Large Language Models Fine-Tuning [63.321205487234074]
We propose a.
sparse-efficient Sparse Training (PST) method to reduce the number of trainable parameters during sparse-aware training.
Experiments with diverse networks (i.e., BERT, RoBERTa and GPT-2) demonstrate PST performs on par or better than previous sparsity methods.
arXiv Detail & Related papers (2022-05-23T02:43:45Z) - Memory Efficient Continual Learning for Neural Text Classification [10.70710638820641]
We devise a method to perform text classification using pre-trained models on a sequence of classification tasks provided in sequence.
We empirically demonstrate that our method requires significantly less model parameters compared to other state of the art methods.
While our method suffers little forgetting, it retains a predictive performance on-par with state of the art but less memory efficient methods.
arXiv Detail & Related papers (2022-03-09T10:57:59Z) - Mesa: A Memory-saving Training Framework for Transformers [58.78933015299703]
We present Mesa, a memory-saving training framework for Transformers.
Mesa uses exact activations during forward pass while storing a low-precision version of activations to reduce memory consumption during training.
Experiments on ImageNet, CIFAR-100 and ADE20K demonstrate that Mesa can reduce half of the memory footprints during training.
arXiv Detail & Related papers (2021-11-22T11:23:01Z) - Direction is what you need: Improving Word Embedding Compression in
Large Language Models [7.736463504706344]
This paper presents a novel loss objective to compress token embeddings in Transformer-based models by leveraging an AutoEncoder architecture.
Our method significantly outperforms the commonly used SVD-based matrix-factorization approach in terms of initial language model Perplexity.
arXiv Detail & Related papers (2021-06-15T14:28:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.