論文の概要: DemoRank: Selecting Effective Demonstrations for Large Language Models in Ranking Task
- arxiv url: http://arxiv.org/abs/2406.16332v1
- Date: Mon, 24 Jun 2024 06:10:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 16:03:25.280417
- Title: DemoRank: Selecting Effective Demonstrations for Large Language Models in Ranking Task
- Title(参考訳): DemoRank: ランク付けタスクにおける大規模言語モデルの効果的なデモを選択する
- Authors: Wenhan Liu, Yutao Zhu, Zhicheng Dou,
- Abstract要約: デモ選択をtextitretrieve-then-rerankプロセスとして定式化し、DemoRankフレームワークを導入する。
本フレームワークでは、まずLLMフィードバックを用いてデモレトリバーをトレーニングし、新しい依存性を考慮したトレーニングサンプルを構築し、デモリランカをトレーニングし、数発のICLを改善する。
- 参考スコア(独自算出の注目度): 24.780407347867943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there has been increasing interest in applying large language models (LLMs) as zero-shot passage rankers. However, few studies have explored how to select appropriate in-context demonstrations for the passage ranking task, which is the focus of this paper. Previous studies mainly apply a demonstration retriever to retrieve demonstrations and use top-$k$ demonstrations for in-context learning (ICL). Although effective, this approach overlooks the dependencies between demonstrations, leading to inferior performance of few-shot ICL in the passage ranking task. In this paper, we formulate the demonstration selection as a \textit{retrieve-then-rerank} process and introduce the DemoRank framework. In this framework, we first use LLM feedback to train a demonstration retriever and construct a novel dependency-aware training samples to train a demonstration reranker to improve few-shot ICL. The construction of such training samples not only considers demonstration dependencies but also performs in an efficient way. Extensive experiments demonstrate DemoRank's effectiveness in in-domain scenarios and strong generalization to out-of-domain scenarios. Our codes are available at~\url{https://github.com/8421BCD/DemoRank}.
- Abstract(参考訳): 近年,大型言語モデル (LLM) をゼロショットパスローダとして採用することへの関心が高まっている。
しかし、この論文の焦点である通過ランキングタスクに対して、適切な文脈内デモンストレーションを選択する方法を検討する研究はほとんどない。
従来の研究では、主にデモレトリバーを使用してデモを検索し、インコンテキストラーニング(ICL)に100ドル以上のデモを使用する。
効果的ではあるが、このアプローチはデモ間の依存関係を見落とし、通過ランキングタスクにおける数発のICLのパフォーマンスが劣る。
本稿では、デモ選択を「textit{retrieve-then-rerank}」プロセスとして定式化し、DemoRankフレームワークを導入する。
本フレームワークでは、まずLLMフィードバックを用いてデモレトリバーをトレーニングし、新しい依存性を考慮したトレーニングサンプルを構築し、デモリランカをトレーニングし、数発のICLを改善する。
このようなトレーニングサンプルの構築は、デモの依存関係だけでなく、効率的な方法も考慮している。
大規模な実験では、ドメイン内シナリオにおけるDemoRankの有効性とドメイン外シナリオへの強力な一般化が実証されている。
私たちのコードは~\url{https://github.com/8421BCD/DemoRank}で利用可能です。
関連論文リスト
- Show, Don't Tell: Aligning Language Models with Demonstrated Feedback [54.10302745921713]
Demonstration ITerated Task Optimization (DITTO)は、言語モデルの出力とユーザの実証された振る舞いを直接調整する。
我々は,DITTOがニュース記事やメール,ブログ記事などのドメイン間できめ細かいスタイルやタスクアライメントを学習する能力を評価する。
論文 参考訳(メタデータ) (2024-06-02T23:13:56Z) - In-context Learning with Retrieved Demonstrations for Language Models: A Survey [23.24271704145876]
インコンテクスト学習者(ICL)は入力コンテキストでのデモを少しだけ行うだけで、新しいタスクに適応できる。
最近の開発では、固定された一連のデモを使う代わりに、各入力クエリに合わせたデモを検索する。
本稿では,検索モデル,検索訓練手順,推論アルゴリズムの異なる設計選択について論じ,比較する。
論文 参考訳(メタデータ) (2024-01-21T23:34:42Z) - In-Context Demonstration Selection with Cross Entropy Difference [95.21947716378641]
大規模言語モデル(LLM)は、ゼロショットタスクのパフォーマンスを改善するためにコンテキスト内デモを使用することができる。
テキスト内デモを選択するためのクロスエントロピー差分法(CED)を提案する。
論文 参考訳(メタデータ) (2023-05-24T05:04:00Z) - Dr.ICL: Demonstration-Retrieved In-context Learning [29.142262267850704]
インコンテキスト学習(ICL)は、LLMを使用するための強力なパラダイムとして、数発のデモでタスクを実行するために大きな言語モデルを教える。
最近の研究では、利用可能なデモのプールからの入力に対して意味論的に類似したデモを取得することで、より良いパフォーマンスが得られることが示唆されている。
この研究は、BM25のような単純な単語オーバーラップ類似度対策でさえ、ランダムに選択された実演よりも優れていることを示すことで、検索ベースのICLアプローチの適用性を拡大する。
論文 参考訳(メタデータ) (2023-05-23T14:55:25Z) - Unified Demonstration Retriever for In-Context Learning [56.06473069923567]
Unified Demonstration Retriever (textbfUDR)は、幅広いタスクのデモを検索する単一のモデルである。
我々は,高品質な候補を見つけるための反復的なマイニング戦略を備えたマルチタスクリストワイド・トレーニング・フレームワークを提案する。
13のタスクファミリーと複数のデータドメインにわたる30以上のタスクの実験は、UDRがベースラインを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2023-05-07T16:07:11Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて、文脈内学習による顕著な結果を示している。
ICL-D3IEと呼ばれるシンプルだが効果的なテキスト内学習フレームワークを提案する。
具体的には、ハードトレーニング文書から最も困難で独特なセグメントをハードデモとして抽出する。
論文 参考訳(メタデータ) (2023-03-09T06:24:50Z) - Robustness of Demonstration-based Learning Under Limited Data Scenario [54.912936555876826]
実証に基づく学習は、限られたデータシナリオ下で事前訓練された言語モデルの能力を刺激する大きな可能性を示している。
実演と予測の間に明確な整合性がないため、なぜこのような実演が学習プロセスに有益なのかは不明だ。
本稿では,実証に基づくシーケンスラベリングの頑健さを深く掘り下げるために,標準情報から直感的に有用な情報を徐々に取り除き,病理デモを設計する。
論文 参考訳(メタデータ) (2022-10-19T16:15:04Z) - Self-Generated In-Context Learning: Leveraging Auto-regressive Language
Models as a Demonstration Generator [22.532627423361177]
自己生成型インコンテキスト学習(SG-ICL)は、PLM自体からインコンテキスト学習のためのデモを生成する。
我々は、SG-ICLがゼロショット学習を著しく上回り、一般的に約0.6金のトレーニングサンプルの価値があることを示した。
論文 参考訳(メタデータ) (2022-06-16T10:52:13Z) - Contrastive Demonstration Tuning for Pre-trained Language Models [59.90340768724675]
デモの例は、プロンプトチューニングの優れた最終パフォーマンスに不可欠である。
提案手法は次の通りである: (i) 従来の急速学習アプローチにプラグイン; (ii) 多数のカテゴリを持つ広範囲な分類タスクに拡張。
16のデータセットに対する実験結果から,従来のLM-BFFとP-tuningを統合した手法により,性能が向上することが示された。
論文 参考訳(メタデータ) (2022-04-09T05:30:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。