論文の概要: Is your benchmark truly adversarial? AdvScore: Evaluating Human-Grounded Adversarialness
- arxiv url: http://arxiv.org/abs/2406.16342v2
- Date: Fri, 01 Nov 2024 01:16:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-04 14:32:35.462603
- Title: Is your benchmark truly adversarial? AdvScore: Evaluating Human-Grounded Adversarialness
- Title(参考訳): あなたのベンチマークは本当に逆境なのか?AdvScore:人間中心の逆境を評価する
- Authors: Yoo Yeon Sung, Maharshi Gor, Eve Fleisig, Ishani Mondal, Jordan Lee Boyd-Graber,
- Abstract要約: 人為的な評価指標であるAdvScoreを提案する。
AdvScoreは、モデルのさまざまな能力と人間の能力をキャプチャすることで、データセットの真逆性を評価する。
我々は,9,347人の回答と10の言語モデル予測を用いてAdvScoreを適用し,モデルの改善を5年にわたって追跡する。
- 参考スコア(独自算出の注目度): 14.113597578863422
- License:
- Abstract: Adversarial datasets should ensure AI robustness that matches human performance. However, as models evolve, datasets can become obsolete. Thus, adversarial datasets should be periodically updated based on their degradation in adversarialness. Given the lack of a standardized metric for measuring adversarialness, we propose AdvScore, a human-grounded evaluation metric. AdvScore assesses a dataset's true adversarialness by capturing models' and humans' varying abilities, while also identifying poor examples. AdvScore then motivates a new dataset creation pipeline for realistic and high-quality adversarial samples, enabling us to collect an adversarial question answering (QA) dataset, AdvQA. We apply AdvScore using 9,347 human responses and ten language model predictions to track the models' improvement over five years (from 2020 to 2024). AdvScore assesses whether adversarial datasets remain suitable for model evaluation, measures model improvements, and provides guidance for better alignment with human capabilities.
- Abstract(参考訳): 敵対的データセットは、人間のパフォーマンスにマッチするAIの堅牢性を保証する必要がある。
しかし、モデルが進化するにつれて、データセットは時代遅れになる可能性がある。
したがって、敵対性データセットは、敵性の劣化に基づいて定期的に更新されるべきである。
対向性を測定するための標準指標が欠如していることを踏まえ,人間による評価指標であるAdvScoreを提案する。
AdvScoreは、モデルと人間のさまざまな能力をキャプチャすることで、データセットの真逆性を評価すると同時に、不十分な例を特定する。
次にAdvScoreは、現実的で高品質な逆数サンプルのための新しいデータセット生成パイプラインを動機付け、逆数質問応答(QA)データセットであるAdvQAを収集する。
9,347人の回答と10の言語モデル予測を用いてAdvScoreを適用し、モデルの改善を5年間(2020年から2024年まで)追跡する。
AdvScoreは、敵対的データセットがモデル評価に相応しいかどうかを評価し、モデルの改善を評価し、人間の能力との整合性を改善するためのガイダンスを提供する。
関連論文リスト
- Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) は、与えられたレビューに対して全てのクワッド(アスペクト項、アスペクトカテゴリー、意見項、感情極性)を予測することを目的としている。
ASQPタスクにおける重要な課題はラベル付きデータの不足であり、既存のメソッドのパフォーマンスを制限している。
そこで我々は,擬似ラベルスコアラーを用いた自己学習フレームワークを提案し,レビューと擬似ラベルの一致をスコアラーが評価する。
論文 参考訳(メタデータ) (2024-06-26T05:30:21Z) - Sources of Gain: Decomposing Performance in Conditional Average Dose Response Estimation [0.9332308328407303]
条件付き平均線量応答(CADR)の推定は重要であるが難しい問題である。
本稿では,この手法を解析し,さらなる分析を行わない一般的なベンチマークデータセットを用いることで,モデル性能を判断するには不十分であることを示す。
本稿では,CADR推定器の性能に寄与する5つの異なる成分の影響を評価できる新しい分解手法を提案する。
論文 参考訳(メタデータ) (2024-06-12T13:39:32Z) - Scaling Laws Do Not Scale [54.72120385955072]
最近の研究によると、データセットのサイズが大きくなると、そのデータセットでトレーニングされたモデルのパフォーマンスが向上する。
このスケーリング法則の関係は、モデルのアウトプットの質を異なる集団がどのように認識するかと一致しないパフォーマンスを測定するために使われる指標に依存する、と我々は主張する。
異なるコミュニティは、互いに緊張関係にある価値を持ち、モデル評価に使用されるメトリクスについて、困難で、潜在的に不可能な選択をもたらす可能性がある。
論文 参考訳(メタデータ) (2023-07-05T15:32:21Z) - Evaluating Graph Neural Networks for Link Prediction: Current Pitfalls
and New Benchmarking [66.83273589348758]
リンク予測は、グラフのエッジの一部のみに基づいて、目に見えないエッジが存在するかどうかを予測しようとする。
近年,この課題にグラフニューラルネットワーク(GNN)を活用すべく,一連の手法が導入されている。
これらの新しいモデルの有効性をよりよく評価するために、新しい多様なデータセットも作成されている。
論文 参考訳(メタデータ) (2023-06-18T01:58:59Z) - Unsupervised Dense Retrieval with Relevance-Aware Contrastive
Pre-Training [81.3781338418574]
関連性を考慮したコントラスト学習を提案する。
我々は、BEIRおよびオープンドメインQA検索ベンチマークにおいて、SOTAアン教師なしコントリバーモデルを一貫して改善する。
本手法は, 目標コーパスの事前訓練後, BM25に打ち勝つだけでなく, 優れた数発学習者として機能する。
論文 参考訳(メタデータ) (2023-06-05T18:20:27Z) - On the Efficacy of Adversarial Data Collection for Question Answering:
Results from a Large-Scale Randomized Study [65.17429512679695]
逆データ収集(ADC)では、人間の労働力がモデルとリアルタイムで対話し、誤った予測を誘発する例を作成しようとする。
ADCの直感的な魅力にも拘わらず、敵対的データセットのトレーニングがより堅牢なモデルを生成するかどうかは不明だ。
論文 参考訳(メタデータ) (2021-06-02T00:48:33Z) - Improving Question Answering Model Robustness with Synthetic Adversarial
Data Generation [41.9785159975426]
最先端の質問応答モデルは、様々な敵の攻撃を受けやすいままであり、人間レベルの言語理解を得るには程遠い。
提案されている1つの方法は動的逆データ収集であり、人間のアノテータがループ内のモデルが失敗する例を作成しようとするものである。
本研究では,合成逆データ生成パイプラインを構成する複数の回答選択,質問生成,フィルタリング手法について検討する。
合成データと人為的データの両方で訓練されたモデルは、合成逆数データで訓練されていないモデルより優れ、対数上での最先端の結果を得る
論文 参考訳(メタデータ) (2021-04-18T02:00:06Z) - Improving Dialog Evaluation with a Multi-reference Adversarial Dataset
and Large Scale Pretraining [18.174086416883412]
i) コンテキストごとに5つの関連する応答と,(ii) コンテキスト毎に無関係な応答を5つの対向的に作成するDailyDialog++データセットを導入する。
複数の正しい参照が存在する場合でも、n-gramベースのメトリクスと埋め込みベースのメトリクスは、関連する応答をランダムな負と区別するのにうまく機能しないことを示す。
DEBと呼ばれる新しいBERTベースの評価指標を提案し、これはRedditの7億2700万の会話で事前トレーニングされ、データセットで微調整される。
論文 参考訳(メタデータ) (2020-09-23T18:06:52Z) - Dialogue Response Ranking Training with Large-Scale Human Feedback Data [52.12342165926226]
ソーシャルメディアのフィードバックデータを利用して、フィードバック予測のための大規模なトレーニングデータセットを構築します。
我々は,1300万対の人間のフィードバックデータに基づくGPT-2モデルであるDialogRPTを訓練した。
我々のランキングは、Redditのフィードバックを予測する上で、従来のダイアログの難易度ベースラインよりも優れています。
論文 参考訳(メタデータ) (2020-09-15T10:50:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。